Graph Search and Lattices
in ASR

CS 224S / LINGUIST 285 Spoken Language Processing
May 5, 2022

Guest Lecturer: Arlo Faria
arlo@mod9.com

Background: ICSI research - spinoff

©1994

CONNECTIONIST
SPEECH
RECOGNITION

A Hybrid Approach

pgas

eeeeeeeeeeeeeeeeeeeeeee

2000 - 2006 2007 -2018

2019-2022

Motivation: graph search and lattices

Data is limited; customization is necessary.
Theory: models should be interpretable fine-tuned.
Application: DIY functionality; not professional services.

Errors are inevitable; mitigation is necessary.
Theory: represent recegnize what might be s spoken.
Application: search and editing; not captions or dictation.

Conclusion: use WFST E2E framework (i.e. Kaldi).

Kaldi: extensible HMM-DNN toolkit

Dan Povey: HMM-GMM = WFEST-DNN — K2-FSA

Code structure
egs/ Scripts to train and evaluate systems.

src/ C++ libraries and Unix-style binaries.
tools/ Dependencies: OpenFST and BLAS.

Private fork
egs/ Use fisher swbd recipe; add 15,000 hours of data.

src/ Modify |/O; add server w/ graph & lattice functions.
tools/ Add TensorFlow, Boost, SRC, VAD, etc.

Kaldi: modern approach to HMM

Structure: CTC-like model

Context: left biphones
Transition probabilities = 0.5

Training: lattice-free MM|

Features: 40d MFCC @ 30ms step

Figure 1: danielpovey.com/files/2018 interspeech end2end.pdf
Text: danielpovey.com/files/2016 interspeech mmi.pdf

=

£80 B0

(a) CTC’s HMM topology (b) 1-state HMM topology

(3 o
ON05-© ONON &
(c) 2-state HMM topology (d) 3-state HMM topology

Figure 1: Different HMM topologies. The state marked with “-”
is CTC’s blank state and is shared across all the labels.

After comparing various topologies, we settled on a topology
where the first frame of a phone has a different label than the
remaining frames (a different pdf-id, in Kaldi terminology, i.e.
it maps to a different output of the neural net), so a single HMM
may emit either a, or ab, or abb, etc. The reader is free to
consider the b as analogous to the blank symbol in CTC (while
bearing in mind that in general each triphone may get its own
version of the b symbol).

We build the phonetic-context decision tree specifically for
this topology and frame rate after converting alignments from a
traditional HMM-GMM system at the normal frame rate; the
decision-tree is then built using the same procedure and the
same features (MFCC+LDA+MLLT) as for our HMM-GMM
system. The optimal number of leaves tends to be a little smaller
than than for a cross-entropy neural network.

2.2. Transition modeling

In our baseline cross-entropy based HMM-DNN framework,
the HMMs use transition probabilities; these are estimated in
the conventional way for HMMs. In this work we just set the
transition probabilities to be a constant value (0.5) that makes
each HMM-state sum to one. For the topologies we use, es-
timating the transition probabilities would add no modeling
power anyway (depending on the exact granularity with which
they are shared).

https://www.danielpovey.com/files/2018_interspeech_end2end.pdf
https://www.danielpovey.com/files/2016_interspeech_mmi.pdf

Figure 1:
Figure 2, Table 1:

Kaldi: practical approach to DNN

t
-7 \F2 Layer 4
7 27 1\ \ w2
Layer 3
Layer 2
t-11 t+7
Layer 1
t-13 VAN Y/ \ ; t+9
C 1] B R e et e T e | ee| | et e I [[| |

Figure 1: Computation in TDNN with sub-sampling (red)

Batch Normalization

[
Rectified Linear Unit
[I 1
S N . e 7
Weight matrix M —— //E\
Semi- orthogonal \‘ ~._— |
Weight matrix N i il

Figure 2: Factorized layer with semi-orthogonal constraint

Table 1: WER for TDNN models on Switchboard LVCSR task.

Acoustic Model Size s\x]/?]‘glaszo'(])‘g al RTO3 | Time *(s)
Baseline TDNN (625) 19M 9.5 143 | 175 90
+ 12 regularization 9.1 140 | 169 96
Baseline TDNN (1536) 80M 9.4 146 | 172 211
+ 12 regularization 9.0 139 | 16.6 210
Factorized TDNN (1536-256) 9.7 1441 174 154
+ 12 regularization 20M | 9.1 139 | 17.0 155

++ semi-orthogonal I 9.2 13.7 | 16.0 147

danielpovey.com/files/2015 interspeech multisplice.pdf

danielpovey.com/files/2018 interspeech tdnnf.pdf

https://www.danielpovey.com/files/2015_interspeech_multisplice.pdf
https://www.danielpovey.com/files/2018_interspeech_tdnnf.pdf

Reading: recommended vs. optional

@ o \&, 2012_icassp_lattices.pdf X +

2012_icassp_lattic...

GENERATING EXACT LATTICES IN THE WFST FRAMEWORK

Daniel Povey', Mirko Hannemann'?,

Petr Motlicek®, Yanmin Qian’, Korbinian Riedhammer®, Karel Vesely*, Ngoc Thang Vu®

! Microsoft Research, Redmond, WA, dpoveyemicrosoft.com
2 Brno University of Technology, Czech Republic, inannema@fit.vutbr.cz
3 CRIM, Montreal, Canada * SRI International, Menlo Park, CA, USA
5 University of Edinburgh, U.K. ¢ IDIAP, Martigny, Switzerland
7 Tsinghua University, Beijing, China ® Karlsruhe Institute of Technology, Germany
9 Pattern Recognition Lab, University of Erlangen-Nuremberg, Germany

Gilles Boulianne®, Lukds Burget®*, Arnab Ghoshal®, Milos Janda?, Martin Karafiat®, Stefan Kombrink?,

® K hbka.dvi x +

C (ﬂ cs.nyu.edu/~mo

hbka.dvi

Springer Handbook on Speech Processing and Speech Communication 1

SPEECH RECOGNITION WITH WEIGHTED FINITE-STATE TRANSDUCERS

Mehryar Mohri'? Fernando Pereira® Michael Riley®

! Courant Institute 2 University of Pennsylvania 3 Google Research

251 Mercer Street 200 South 33rd Street 76 Ninth Avenue
New York, NY 10012 Philadelphia, PA 19104 New York, NY 10011

mohri@cims.nyu.edu pereira@cis.upenn.edu riley@google.com

Reading: recommended vs. optional

The graph creation process we use in our toolkit, Kaldi [1], is very
close to the standard recipe described in [2], where the Weighted
Finite State Transducer (WFST) decoding graph is
1 <==

HCLG = min(det(H o C o L 0 G)),

(NN @ Kaldi: Decoding graph constru. X 4+ v
C @& kaldi-asr.org/doc/graph.html h N » 0@
Main Page = Related Pages | Modules @ Namespaces ¥ | Classes v | Files v Q- Search

| | | | | |
How decision trees are used in Kaldi

V Decoding graph construction in Kaldi

Overview of graph creation

If we were to summarize our approach on one line (and one line can't capture all the
details, obviously), the line would probably as follows, where asl=="add-self-loops"

and rds=="remove-disambiguation-symbols", and H' is H without the self-loops:
Disambiguation symbols

The ContextFst object

HCLG = asl(min(rds(det(H' o min(det(C o min(det(L o G)))))))) _
Avoiding weight pushing
Decoding-graph creation recipe (test time) Weight-pushing is not part of the recipe; instead we aim to ensure that no stage of

Preparing the initial symbol tables

Kaldi Generated by _meyAge 1.8.13

graph creation will stop the result from being stochastic, as long as G was stochastic.

Table 1: Semiring examples. ®\og is defined by: T S105 y = —log(e™* +e7Y).
SEMIRING SET ® || 0 |1
Boolean {0,1} v |[A] 0 |1
Probability R4 + X 0 1
=Log RU{—00,+00} | ®rog | + | +00 | 0
Tropical RU{—00,400} | min | + | +00 | O

ply to countable sums (Lehmann [1977] and Mohri
[2002] give precise definitions). The Boolean and
tropical semirings are closed, while the probability
and log semirings are not.

A weighted finite-state transducer T =
(A,B,Q,I,F,E,\,p) over a semiring K is
specified by a finite input alphabet .4, a finite output
alphabet B, a finite set of states (), a set of initial
states I C @, a set of final states F' C (), a finite set
of transitions E C @ x (AU{e}) x (BU{e}) xKxQ,
an initial state weight assignment A : I — K, and
a final state weight assignment p : FF — K. EJq]
denotes the set of transitions leaving state ¢ € Q.
|T| denotes the sum of the number of states and
transitions of T'.

Weighted automata (or weighted acceptors) are
defined in a similar way by simply omitting the
input or output labels. The projection operations
IT, (T') and II (T") obtain a weighted automaton from
a weighted transducer 7" by omitting respectively the
input or the output labels of 7.

Given a transition e € E, p[e] denotes its origin
or previous state, n[e] its destination or next state,
i[e] its input label, o[e] its output label, and wle] its
weight. Apathm =e;---er isa sequence of con-
secutive transitions: n[eZ 1] = pleil, i = 2,... k.
The path = is a cycle if ple1] = nlex]. An e- cycle
is a cycle in which the input and output labels of all
transitions are €.

closed, this is defined even for infinite R. We de-
note by P(q,q’) the set of paths from g to ¢’ and by
P(q,z,y,q’) the set of paths from g to ¢’ with input
label z € A* and output label y € B*. For an accep-
tor, we denote by P(q, z, ¢’) the set of paths with in-
put label x. These definitions can be extended to sub-
sets R;R, c Q by P(R7 R/) = UqER, q’ER’P(q; ql)>
P(R7 Z,Y, R,) = U(IGR, q’ER’P(q, Z,Y, q’)’ and, for
an acceptor, P(R,z, R') = Uger,¢er' P(g,z,¢).
A transducer T is regulated if the weight associated
by T to any pair of input-output strings (z,y), given
by

T(z,y)= D Alplrl] ® wia] ® plnla]], ()

neP(I,z,y,F)

is well defined and in K. If P(I,z,y, F) = 0, then
T(z,y) = 0. A weighted transducer without e-cycles
is regulated, as is any weighted transducer over a
closed semiring. Similarly, for a regulated acceptor,
we define

& Abplr]) ® win] ® pln[x]]. (10)

weP(I,z,F)

The transducer T is trim if every state occurs in
some path m € P(I, F'). In other words, a trim trans-
ducer has no useless states. The same definition ap-
plies to acceptors.

Tropical semiring?

[NON) i imon’s
@ The influence of Imre Simon's = X + v Y 9 Google Maps % + o«
< C' (& link.springer.com/content/pdf/10.1007/s00233-019-09999-8.pdf & (M) %N O
() bl < C @& google.com/maps/dir/University+of+S&o+Paulo.. & Q M Y * O &)
waqasrmm
‘ Caieiras C
= 3 R e [SP-332] ans 381
= HH
= <"> @ @ w O‘b + X | [sP23e] Serra da @
HO Cantareira
m lan nd semigr ‘ PERUS
automata, languages a dse groups @) [University of Séo Paulo] VILA PERUS
J E o P- 1 :) % | o
ean-tric Fin © | 23°2611.0'S 46°4530.0'W ‘ = —
> el Estadual
Received: 1 January 2019 / Accepted: 12 January 2019 / Published online: 31 January 2019 : ; = Tememd giacua LS
© Springer Science+Business Media, LLC, part of Springer Nature 2019
® O @ Advanced Dynamic Programm X + v

& C (ﬁ aclanthology.org/C08-5001.pdf @ ﬁ() * O &

Semiring Set ® |®| 0 |1 | intuition/application
Boolean {0,1} V. | A| 0 |1]]logical deduction, recognition
Viterbi [0,1] max | X | 0 |1 | prob. of the best derivation
Inside RtU{+o0} | + | x| 0 |1 |prob. of astring
Imre Simon Real RU {400} | min | + | +oo | 0 | shortest-distance

Tropical | RT U{+o00} | min | + | +o0 | 0 with non-negative weights

Introduction 1 Counting N + | X 0 | 1 | number of paths

Imre Simon, a Brazilian mathematician and computer scientist, was born in Budapest,

Hungary on August 14, 1943. He died in Sdo Paulo, Brazil on August 13, 2009, just a Table 2: Examples of semirings

day short of his 66th birthday. More details on his life can be found in the preface to

W?FS[AT]

Recommend:

awnihannun.com/writing/automata ml.html

Optional:

openfst.org/twiki/bin/view/FST/FstBackground

Helpful:

courses.engr.illinois.edu/ece417/fa2020/slides/lec16.pdf

O ® @ Lecture 16: Weighted Finite St- X + v

& C @ courses.engr.illinois.edu/ece417/fa2020/slides/leci6.pdf @ h Y % O @) :

= Lecture 16: Weighted ... 12 /33 — 150% + RS}

Weighted Finite State Transducers

The:Le/0.3 very:trés/0.2

dog: chlen/l

dogch|en/03 is:est/0.5 Qte mlgnon/OQ

|s a/05
A:Un/0. 3
This:Ce/0. 2/

A:Un/0.2

; hungry falm/OQ

cat:chat/0.7 very: tres/O 2

A (Weighted) Finite State Transducer (WFST) is a (W)FSA
with two labels on every edge:

@ An input label, i € X, and
@ An output label, o € Q.

@ @® @ Lecture 16: Weighted Finite St- X + v

& C' @ courses.engr.illinois.edu/ece417/fa2020/slides/leci6.pdf & Y & O @) :

= Lecture 16: Weighted ... 20 /33 — 150% + B o

Composition

The main reason to use WFSTs is an operator called
“composition.” Suppose you have
@ A WFST, R, that translates strings a € A into strings b € B
with joint probability p(a, b).
@ Another WFST, S, that translates strings b € B into strings
¢ € C with conditional probability p(c|b).
The operation T = Ro S gives you a WFST, T, that translates
strings a € A into strings ¢ € C with joint probability

p(a,c) = Z p(a, b)p(c|b)

beB

https://awnihannun.com/writing/automata_ml.html
https://www.openfst.org/twiki/bin/view/FST/FstBackground
https://courses.engr.illinois.edu/ece417/fa2020/slides/lec16.pdf

WFST operations

Intuitive in theory; may be deferred in practice.
Kaldi: static graph (huge) or dynamic lookahead (slow).

2. Determinization, minimization, e-removal, etc.
Complex optimizations, in theory and practice.
Kaldi: specialized algorithms, beyond OpenFST.

Intuitive in theory; may be pruned in practice.
Kaldi; decode to lattices ... and rescore from lattices!

Previously in C5224S ...

danielpovey.com/files/2012 icassp lattices.pdf
@ web.stanford.edu/class/cs224s/lectures/224s.22.lec8.pdf @ M &)

= 224s.22.lec8.pdf

S=UoHCLG

o0 e 6§ 224s.22.lec8.pdf X +

&< > C & web.stanford.edu/class/cs224s/lectures/224s.22.lec8.pdf @

Noisy channel model

ok »O® search graph of the utterance

Speech Architecture meets Noisy e i ”

< C' @ web.stanford.edu/class/cs224s/lectures/224s.22.lec9.pdf @ (h % R O &)
Channel

1 1 P (O|W) = 224s.22lec9.p
W =argmax P(O |W)P(W)

weLl
Decoding
Search

likelihood prior

Summary: ASR Architecture

e Five easy pieces: ASR Noisy Channel architecture
e Feature Extraction:
39 “MFCC” features
U e Acoustic Model:
Gaussians for computing p(o|q) p (O | q)
|, e Lexicon/Pronunciation Model
H C HMM: what phones can follow each other
P(W) (; © Language Model
N-grams for computing p(w_i|w_(i-1))
- S e Decoder

— Viterbi algorithm: dynamic programming for combining all these
CO m pOS |t| on to get word sequence from speech!

Feature
Extraction

Best path

21

https://www.danielpovey.com/files/2012_icassp_lattices.pdf

WFST <-> Probability Theory

© A WFST, R, that translates strings a € A into strings b € B
with jetnt-prebabitity—p{a;b): p(a|b)

@ Another WFST, S that translates strmgs b € B into strings

c € C with eenditional-prebabilitypfetb)- p(b,c

The operation T = Ro S gives you a WFST, T, that translates
strings a € A into strings ¢ € C with joint probability

p(a,c) =Y _plarbypletb)- p(alb)p(b,c)

beB

If Sis a WFSA: p(b,b) = p(b)

Noisy Channel €<-> WFST

p(O|W)p(W) P(W) G: Grammar (e.g. trigram LM)
2 P(O|L)P(LIW)P(W) P(L|W) L: Lexicon (pronunciation dictionary)
L
Z P(O|C)P(C|L)P(LIW)P(W) P(C|L) C:Context-dependency (decision tree)
CL

z P(O|Q)P(Q|C)P(C|L)P(LIW)P(W) P(QIC) H:HMM (e.g.biphones)

QCL : :
UoHoCoLoG i

Viterbi Approximation

argmax) P(OIQP(QIW)P(W) = argmax P(O|Q)P(QIW)P(W)
' |

argmax Z P(0|Q)P(Q|C)P(C|L)P(L|W)P(W) = argmax P(0|Q)P(Q|C)P(C|L)P(L|W)P(W)
WA 0,CLW

= BestPath(UoHoCoLoG)

Credit:

Example

* Build a graph for each word.

Adam Janin, CS188 (Berkeley)

(-
2
@»%

()e+

el
(Dot
@D Z

Example

* Build a graph for each word.

UW
* Combine where possible. @

Credit: Adam Janin, CS188 (Berkeley)

Example

o. .7

x:y — When you traverse the arc, consume “x” and emit “y”.
<eps> - Epsilon.

* Oninput, do not consume any input.

* On output, do not emit any output.

For any word/pronunciation: all input is consumed, one word is output.

UW:<eps>

<eps>:TEN

N:<eps>

Credit: Adam Janin, CS188 (Berkeley)

Example

* Next slide has a bigger example:

* bad, badge, bag, bid, big, bud, budge, bug
e Uses letters rather than phonemes to make it easier to read.
* The data structure is known as a “decoding graph”.

Credit: Adam Janin, CS188 (Berkeley)

d:<eps>

<eps>:bud

<eps>:<eps>

e:.<eps>

<eps>:<eps>

<eps>:bad

<eps>:<eps>

bad, badge, bag, bid, big, bud, budge, bug

Credit: Adam Janin, CS188 (Berkeley)

<eps>:bud

<eps>.<eps>

a:<eps>

e:.<eps>

<eps>:<eps>

1:<eps>
<eps>:bad

a b d:<eps>
:b1 ‘
a <eps>:<eps>

Credit: Adam Janin, CS188 (Berkeley)

U = DNN output (WFSA)

(an acceptor is represented as a WFST with identical input and out-

put symbols). It has T'+1 states, with an arc for each combination
p(olq) = U mmp of (time, context-dependent HMM state). The costs on these arcs

correspond to negated and scaled acoustic log-likelihoods.

Y4

ShortestPath = BestPath

1/4.86 I 1/4.16 3/5.16

Fig. 1. Acceptor U describing the acoustic scores of an utterance

HCLG = decoding graph (WFST)

11 1

HCLG = min(det(H o C o Lo G))

where H, C, L and G represent the HMM structure, phonetic
context-dependency, lexicon and grammar respectively, and o 1is
== WFST composition (note: view HCLG as a single symbol).
In HCLG, the mput labels are the identifiers of context-
dependent HMM states, and the output labels represent words.

S = search graph (WFST)

S=UoHCLG

which we call the search graph of the utterance. It has approximately
=) 7'+1 times more states than HCLG itself. The decoding problem is
==) equivalent to finding the best path through S. The input symbol se-

quence for this best path represents the state-level alignment, and the
==) output symbol sequence is the corresponding sentence.

Graph construction: practical concerns

Implementation

Kaldi: disambiguation symbols, word-position-dependent phones, self-loops, e-removal.
OpenFST: const vs. vector; prune vs. compress; packaged symbol tables; version skew.

Size

large-vocabulary:
large-vocabulary:
custom grammar:

Speed

large-vocabulary:
large-vocabulary:
custom grammar:

~10
~0.1
~10

GB HCLG
MB HCLoG
KB HCLG

minutes
seconds
milliseconds

(static optimization)
(dynamic lookahead)
(dynamic composition)

(single-threaded, ~10G memory)
(add words w/ unigram probability)
(may even be network bound)

Graph search: practical concerns

== we do not do a full search of S, but use beam pruning. Let B be
the searched subset of .S, containing a subset of the states and arcs
of S obtained by some heuristic pruning procedure. When we do

== Viterbi decoding with beam-pruning, we are finding the best path
through B. Since the beam pruning is a part of any practical search
procedure and cannot easily be avoided, we will define the desired

==) outcome of lattice generation in terms of the visited subset B of S.

Settings: pruning beam, lattice beam, max active states
Profiling: not much compute or memory usage (per thread)
Speed: mostly DNN evaluation (matrix multiplication)

Memory: mostly lattice determinization (if needed)

Lattice definition

tl;dr: directed acyclic weighted word graph ("DAWWG")

There 1s no generally accepted single definition of a lattice. In [3]
and [4], it 1s defined as a labeled, weighted, directed acyclic graph
(.e. a WFSA, with word labels). < ¢ sumummne < 4 v

c & microsoft.com/en-us/research/wp-content/uploads/2017/01/HumanParity.pdf @ @ Y %N O &

= Achieving Human Parity in Conv... 18 /52 = 69% + = 0:)

hostages / 0.187

conference / 0.734

Lattice Free MM

* Simple brute force MMI

arg max Z lo P(w,a;0)
. 6 & i & P(w)P(a;0) * Avoids need to generate lattices
@)
125 P) . i
—argmax Y log gl(| WC:)()@) Alignments always current
© w,acData a,
conference / 1 . [Chen et al., 2006, McDermott et al., 2914, Povey et al., 2016]
P(a|w;©)
= arg max z log
that / 0.039 5 O hostages /1 o Wi D PW)P(a|W;0)

b
a conference is being recorded /Trad‘“°"a”vappf°ximated by
word sequences in lattice (DAG)

Instead LFMMI uses all possible -
word sequences in cyclic FSA \

Text: danielpovey.com/files/2012 icassp lattices.pdf
Figure: (source unknown; perhaps Murat Saraclar, AT&T, 2004)

https://www.danielpovey.com/files/2012_icassp_lattices.pdf

Lattice properties

thdr:WelLcBcS

e The lattice should have a path for every word sequence within
« of the best-scoring one.

e The scores and alignments in the lattice should be accurate.

e The lattice should not contain duplicate paths with the same
word sequence.

Text: danielpovey.com/files/2012 icassp lattices.pdf

https://www.danielpovey.com/files/2012_icassp_lattices.pdf

Lattice generation

S5.4. Summary of our algorithm

During decoding, we create a data-structure corresponding to a full
state-level lattice. That is, for every arc of HCLG, we traverse on
every frame, we create a separate arc in the state-level lattice. These

mm) arcs contain the acoustic and graph costs separately. We prune the
state-level graph using a beam «; we do this periodically (every 25
frames) but this is equivalent to doing it just once at the end, as in [3].
Let the final pruned state-level lattice be P. Let Q = inv(P), and
let EZ be an encoded version of () as described above (with the state
labels as part of the weights). The final lattice is

L = prune(det(rmeps(E)),). 4)

The determinization and epsilon removal are done together by a sin-

gle algorithm that we will describe below. L is a deterministic, 4mmm

acyclic weighted acceptor with the words as the labels, and the graph

and acoustic costs and the alignments encoded into the weights. The
mm) costs and alignments are not “synchronized” with the words.

Text: danielpovey.com/files/2012 icassp lattices.pdf

https://www.danielpovey.com/files/2012_icassp_lattices.pdf

Lattices in Kaldi

tl;dr: LatticeWeight=(graph cost,am cost)

[NN J (@ Kaldi: Lattices in Kaldi x 4+ v (NN @ Kaldi: Lattices in Kaldi x 4+ v
C' @& kaldi-asr.org/doc/lattices.html h S » 0@ @& kaldi-asr.org/doc/lattices.html h Y * 0O

Main Page | Related Pages Modules Namespaces v Classes v Files v \ Q- Search
| |

The Lattice type |

The Lattice type is just an FST templated on a particular semiring. In kaldi-lattice.h, we create a typedef:
typedef fst::VectorFst<LatticeArc> Lattice;
where LatticeArc is the normal arc type templated on LatticeWeight:

typedef fst::ArcTpl<LatticeWeight> LatticeArc;

LatticeWeight is again a typedef that instantiates the LatticeWeightTpl template using BaseFloat as the floating point type.

typedef fst::LatticeWeightTpl<BaseFloat> LatticeWeight;

The template LatticeWeightTpl is something that we define in the fst namespace, in fstext/lattice-weight.h. It has some

similarities to the lexicographic semiring, i.e. it is similar to the OpenFst type

LexicographicWeight<TropicalWeight, TropicalWeight>

Kaldi Generated by dLQXYAgLen 1.8.13

WEFST

Main Page = Related es | Modules Namespaces ¥ Classes ¥ | Files ~ | Q- Search
I I [I

typedef fst::CompactLatticeWeightTpl<LatticeWeight, int32> CompactLatticeWeight;

The template arguments are the underlying weight type (LatticeWeight), and an integer type (int32) that is used to store the
sequences of transition-ids. It contains two data members: a weight and a sequence of integers:

template<class WeightType, class IntType>
class CompactLatticeWeightTpl {

private:

WeightType weight_;

vector<IntType> string_;

}i

These can be accessed using the member functions Weight() and String(). The semiring used by
CompactlLatticeWeightTpl does not correspond to any semiring used in OpenFst, as far as we are aware. Multiplication
corresponds to multiplying the weights and appending the strings together. When adding two CompactLatticeWeights, we
first compare the weight component. If one of the weights is "more" than the other one, we take that weight and its
corresponding string. If not (i.e. if the two weights are the same), we use an ordering on the strings to break ties. The

Kaldi : Generated by 1.8.13

Lattice operations

® © ® (@ Kaldi Lattices in Kaldi + v
& C @ kaldi-asr.org/doc/lattices.html#lattices_operations_nbest (LI ¢ » O $/
Main Page Related Pages Modules Namespaces ¥ Classes ¥ Files » Q- Search

Computing the N-best hypotheses

Kaldi

| | |
Operations on lattices
Pruning lattices

Computing the best path through a lattice

Language model rescoring
Probability scaling
Lattice union
Lattice composition
Lattice interpolation
Conversion of lattices to phones
Lattice projection
Lattice equivalence testing
Removing alignments from lattices
Error boosting in lattices
Computing posteriors from lattices
Determinization of lattices
Computing oracle WERs from lattices
Adding transition probabilities to lattices
Converting lattices to FSTs
Copying lattices

N-best lists and best paths

Times on lattices

I |

|
Computing the N-best hypotheses

The program lattice-nbest computes the N best paths through the lattice (using OpenFst's ShortestPath()
function), and outputs the result as a lattice (a CompactLattice), but with a special structure. As documented for
the ShortestPath() function in OpenFst, the start state will have (up to) n arcs out of it, each one to the start of a
separate path. Note that these paths may share suffixes. An example command line is:

lattice-nbest --n=10 --acoustic-scale=0.1 ark:in.lats ark:out.nbest

Language model rescoring

Because the "graph part" (the first component) of LatticeWeight contains the language model score mixed
together with the transition-model score and any pronunciation or silence probabilities, we can't just replace it
with the new language model score or we would lose the transition probabilities and pronunciation probabilities.
Instead we have to first subtract the "old" LM probabilities and then add in the new LM probabilities. The central
operation in both of these phases is composition (there is some scaling of weights going on, also). The
command line for doing this is: first, to remove the old LM probabilities:

lattice-lmrescore --lm-scale=-1.0 ark:in.lats G_old.fst ark:nolm.lats
and to add the new LM probabilities:

lattice-lmrescore --lm-scale=1.0 ark:nolm.lats G_new.fst ark:out.lats

Generated by _LQXYAgen 1.8.13

=7

Lattice beam

=15

Decoding beam

Lattice density

w A~ OO0 O N

y
= NN
o O o

T

10

Lattice densit

Performance tradeoffs and oracle WER

| |

|

Decoding beam

8 9 10 11 12 13 14 15

T

T

| 1

4 6
Lattice beam

Real time factor

Real time factor

2.5
24
2.3
2.2
21

1.9
18
;4

1

9 1

Decoding beam

0 11 12 13 14 15

T

Lattice beam

T

X

X

'One-best WER'
Oracle WER

9 1

0 11 12 13 14 15

Decoding beam

I

' One-best WER

Oracle WER

X X X X X X X X X

Lattice beam

Conclusion

framework enables practical ASR:
1.interpretable sub-models (not E2E)

2. -> customizable graph
3. - representation

Bonus topics:
Research: differentiable automata

Demonstration: Mod9 ASR Engine
Q&A: e.g. school = startup?

Research: k2-fsa

[JON @ Core concepts ink2 —k2 115 X + v
& > C @ k2-fsagithub.io/k2/core_concepts/in... @ ¢ Y * O 3,

We summarize the unique features of FSA in k2 in below:

o There is only one start state
The start state is always O
All other states have a state number greater than O
. . There is only one final state
é e] glthUb-Com/kz'fsa Q m ﬁ *’ I:l 3/ : The final state always has the largest state number
| Arcs entering the final state always have -1 as the label
Arcs that do not enter the final state cannot have -1 as the label

0O) k2-fsa X + v

Popular repositories

k2 Public)

FSA/FST algorithms, differentiable, with PyTorch compatibility.

States have no scores

All scores are on the arcs

We store weights in the positive sense rather than as costs

We store them as log-probs rather than negative log-probs, and call them "scores"
to indicate this. They can come directly from the output of a log-softmax layer.

‘ Different from other frameworks, FSAs in k2 have only a single final state.

icefall Public

k2 supports conversion of FSAs from OpenFST. See k2.Fsa.from_openfst() .
@Python w198 % 56

@®Cuda Yr598 %137

Attributes
B

Arbitrary attributes can be attached to the arcs of an FSA. For example, we can attach a tensor
attribute to an FSA indicating the output label of arcs so that the FSA is converted to an FST.

The attached attributes are automaticaly propagated through operations, with autograd if

they are real-valued tensors.

@ awni Merge pull request #33 from awni/master

Research: GTN

[] [Common Functions — GTN dc

@ O gtn-org/gtn: Automatic differer X +

2> C Cﬁ github.com/gtn-org/gtn

View code

:= README.md

~-O=>O~0O~0
GTN: Automatic Differentiation with WFSTs

Quickstart | Installation | Documentation

What is GTN?

GTN is a framework for automatic differentiation with weighted finite-state transducers.
The framework is written in C++ and has bindings to Python.

The goal of GTN is to make adding and experimenting with structure in learning algorithms
much simpler. This structure is encoded as weighted automata, either acceptors (WFSAs)
or transducers (WFSTs). With gtn you can dynamically construct complex graphs from
operations on simpler graphs. Automatic differentiation gives gradients with respect to any
input or intermediate graph with a single call to gtn.backward .

h %) *» 0@

22 daysago ‘) 360

.o

< &

Basic Usage

8 Common Functions
Union
Concatenation
Closure
Intersection
Compose
Forward Score
Viterbi Score
Viterbi Path

Autograd Basics

Interfacing with PyTorch

Graph
Autograd
Functions
Parallel
Creations

Utils

Installation

& Read the Docs

X

+

@ gtn.readthedocs.io/en/latest/common_functions.html#compose (LA ¢ * 0O)/

Use compose() to compute the composition of two transducers.

The composition, 71 o T transduces p — u if the first input
transduces p — r and the second graph transduces r — u. As in
intersection, the score of the transduction in the composed graph
is the sum of the scores of the transduction from each input graph.

Graph o1 .9

0530510520

Graph g2 .9

The composed graph, compose(g1, g2) .91
Forward Score
Use forwardScore() to compute the forward score of a graph.

The forward algorithm computes the log-sum-exp of the scores of
all accepting paths in a graph. The graph must not have any cycles.

Demos

1. Negative latency for real-time streaming
Due to determinization during graph construction
Also affected by the DNN acoustic model’s right context

2. Switchboard Benchmark
Kaldi's egs/fisher swbd: competitive with cloud platforms
Lattice representations: oracle performance <1% WER

3. Dynamic customization
Pre-decoding: Add new words to the graph
Post-decoding: Bias phrases in the lattice

Toward Zero Oracle WER on Switchboard

o/ switchboard-benchmark.pdf X 4+ v [NON oo switchboard-benchmark.pdf X 4 v

@& mod9.io/switchboard-benchmark.pdf Q@ @M % NP & cC @& mod9.io/switchboard-benchmark.pdf Q@ " Y ® [0 &)

switchboard... 3 /5

switchboard...

Table 3: Oracle WER for

1 (N-best) ali

Table 4: Oracle WER for word-level alternatives.

WER N Nmax No N5 MB

WER N Numax No Ns MB

ASR2 4.35 100 100 100 29 15
ASR2 4.05 1000 1000 1000 29 76

ASR3 395 2 2 2 2 02
ASR3 2.38 10 10 10 7 04
ASR3 2.06 00 20 20 7 05
ASR4 312 2 2 2 2 02
ASR4 2.01 S 10 10 10 05
ASR5 2.98 2 2 2 2 02
ASRS 2.29 S 5 5 5 04

3. Representations of ASR Alternatives

Lattices can be by some ASR decod ly
in a WFST system such as Kaldi [11], to represent the inherent
and inty of hypoth However the lattices
are large and difficult to use in apphcations that require proper-
ties such as time-synchronous word sub-sequences.
Let L, be the formal language representing the set of all
word sequences encoded in the lattice for a given utterance u.

I 3.1. Utterance-level alternatives (i.e. N-best lists)

Utterance-level alternatives, better known as N-best lists, can be
used to enumerate a formal language L. (N), a set comprising
up to N most likely word sequences in the lattice. The lattice’s
language is a superset, with equality in the theoretical limit:

Ly 2 Jim Lu(N) @

- 3.2. Word-level alternatives

‘Word-level alternatives, sometimes known as sausages, can be
derived by aligning paths in a lattice [14] or from statistics
used in Minimum Bayes’ Risk decoding [15]. These represent
a smaller formal 1 of up to N singl

w (V) at each word position w. Due to 1-to-1 word align-
mems the lattice’s language cannot be decomposed as a cross-
product and (indi by [) of sets:

Lo #] Lu(V) ®)

weu

There may be sequences in L., that cannot be represented as a
concatenation of elements in L, ('), even for large N.

I 3.3. Phrase-level alternatives
By contrast, all paths in the lattice can be represented as a subset
of the crossed and d phi level al ives [16]:
Ly C lim Iz ©)
PEU

In this formulation L, (N) is a set of up to N word

ASRI 4.61 2 2 2 2 02 ASRI 2.69 2 2 2 2 02
ASRI 2.70 10 10 10 10 05 ASRI 1.35 10 10 10 2 04
ASRI 1.58 100 100 100 100 1.9 ASRI 119 100 100 12 2 05
ASRI 1.09 1000 1000 1000 1000 152 ASRI 119 3] 323 12 2 05
ASR2 7.39 2 2 2 2 02 ASR2 698 2 2 2 1 02
ASR2 541 10 10 10 10 05 ASR2 575 10 10 3 1 02

ASR2 574 S 25 3 1 02

Table 5: Oracle WER for phrase-level alternatives.

WER N Numax No N; MB

ASR 2.92 2 2 2 2 03
1.08 10 10 10 3 06
0.65 100 100 22 3 10

3

ASRI 057 1000 1000 22 13

3.4. Converting lattices to phrase alternatives

Phrase alternatives can be derived from a lattice as follows:

. Word-align the lattice, which may need determinization.

L

Establish phrase boundaries as those times not crossed
by non-silence arcs (above some arc posterior threshold).

w

. For each phrase, mask the lattice arcs outside the phrase
boundaries by setting their output symbols as epsilon.

>

Determinize each phrase-masked lattice, which removes
most epsilon arcs, and find /N best paths (i.e. phrases).

The phrase alternatives represenlauon is motivated by its
to ives, since it
d p the asa ion of word
that are assumed to be independent of each other. It is also more
expressive since this cross product generates additional word
sequences that may not have been present in the lattice.

3.5. Representing alternative hypotheses in NIST SCTK

A lesser known feature of the CTM file format is that it can be
used to ives in ASR hyp for

sw_4390 A * * <ALT_BEGIN>
sw_4390 A 4.49 0.66 UM
sw_4390 A = x <ALT>
sw_4390 A 4.49 0.66 I'M
sw_4390 A * * <ALT_END>

‘While this is typically used to represent alternations created by
filtering with the GLM file, it can be further leveraged to enable
oracle scoring of ASR alternatives at various levels. However,
this functionality requires a minor modification to the sclite
source code,* as well as auxiliary software’ that can create the
CTM files while fixing a couple of related bugs in SCTK (such
as expanding doubly-nested alternatives after GLM filtering).

4 i TK/pull/34

which may be of varying lengths, at phrase position p.

Shitps://pypi.org/project/mod9-asr

4. Speech Recognition Systems
Automatic (ASR) and human (HSR) systems were evaluated:
ASR1 is a Kaldi baseline. An OPGRU acoustic model and a

trigram language model were trained only on Switchboard plus
Fisher. These models were loaded by the Mod9 ASR Engine to

produce utterance-, word-, and phrase-level alternatives.
ASR1" customized the decoding graph by adding 28 words

that were out-of-vocabulary (OOV) with respect to the system’s

Table 6: Oracle WER for phrase-level alternatives: adding all
0OV words (ASRI*); denser lattices (ASR'); and both (ASR*).

WER N Nmax Ng N5 MB
ASRI* 5.79 1 1 1 1 01
ASRI” 0.49 100 100 22 3 10
ASRI* 0.42 o 5250 22 3 14

ASRI' 0.36 1000 1000 125 14 54
ASRI' 0.33 10000 10000 125 14 76

relatively small lexicon (aboul 40,000 words that d in
the training data). i were it gener-
ated witha)i t model [17] by ing the

Mod9 ASR Engine’s add-words command.
ASR1" used non-default pruning beam sizes to produce
denser lattices, by requesting a speed: 3 option of the Mod9

ASR Engine, a trade-off with more compute and memory usage.
ASR1*! combined both of the above settings.

ASR2 is IBM Watson with an older “Narrowband” model,
instead of using a more accurate “next-generation” model,
because this system is uniquely capable of demonstrating
utterance- and word-level alternatives at extreme depths.

ASR3 is Google Cloud STT, using an “enhanced” variant
of a “phone_call” model. Their terms allow benchmarking, but
publication requires written permission [currently pending].

ASR4 is Amazon Transcnbe conﬁgured for US Eng]lsh
Their terms allow t king, if rep and

ASRS5 is Microsoft Azure’s Speech-to-Text service, wl'uch
generates utterance-level alternatives of very limited depth.

ASRG is the system in [2], from which IBM Research
shared CTM-formatted system outputs for evaluation purposes.

HSR1 is the Rev.com service, which has speaker labeling.

HSR?2 is the TranscribeMe service, requesting “verbatim”
quality transcripts that include speaker labeling.

HSR3 is the TranscribeMe service, requesting “first draft”
quality transcripts that do not include speaker labeling.

HSR4 is the cielo24 service, with no speaker labeling.

5. Results

All results can be reproduced from system outputs® that were
archived in early 2022, using open-source scoring scripts.”

The bottom row and right column of Table 1, middle sec-
tion of Table 2, and left columns of other tables have italicized
fom This convention is used to clarify which results rmghl be

istic, due to use of a or
also because of the oracle nature of selecting a best alternative.

Table 1 presents the W'ER results from scoring each of the
ASR systems with i ions of the
scoring tools, as described in Secuons 2.1 through 2.4.

Table 2 compares the ASR and HSR systems, including pre-
cision and recall metrics in addition to WER. The results for
HSR3 and HSR4 are exceptional because they required conver-
sion of reference STM files into a single-channel format, using
forced-alignment with an HTK-based ASR system; regions of
overlapped speech may be incorrectly merged in some cases.
Dual-channel audio files were submitted to the HSR services,
so transcribers could understand conversations sides in context.

6] -results.tar.gz

7 ipts.tar.gz

- 0.21 1000 1000 124 14 54
0.18 10000 10000 124 14 74

Table 2 also reports the cost of processing the Switchboard
test set, based on its duration of 100 minutes. For ASR with-
out ion, audio was pi d as channel-
separated files, thus totaling 200 minutes, much of which was
silence. For ASR that exploited reference segmentation, audio
was presented as a collection of 1,834 short audio files, total-
ing 123 minutes. Note: ASR3 and ASR4 costs increase even as
less data is processed, since their respective policies are to bill
requests by rounding up to 15s granularity or at minimum 15s.

Tables 3, 4, 5, and 6 report the oracle WER when the NIST
SCTK scoring software is presented with CTM files that rep-
resent , word-, and phi level alternatives. These
results all use the reference segmentation, since the software
cannot score alternatives that cross STM segment boundaries.
Each table reports the parameter N that was requested, which
may be greater than the actual Niax returned. The N.g and N5
columns indicate the depths of alternatives at the top decile and
median results; these convey the distribution more clearly than
the mean statistic. The rightmost columns report the storage
size of the gzip: CTM files in megaby

6. Conclusion

This work has h\ghllghted many subLle issues with evaluatmg
the famous Swi
results from a Kaldi ASR baselme major cloud plat.forms. hu-
man transcription services, and a research system that improves
its own record-setting performance from 4.3% to 2.3% WER.
Some experiments can be considered unrealistic in various
senses, such as using a reference segmentation or applying set-
tings that would not be practical to deploy in realistic use cases.
Nonetheless, such results can be theoretically interesting. Using
an oracle to select among a phrase-level representation of ASR
alternatives, a limit of 0.18% WER has been demonstrated.
These results motivate future work to improve lattice gen-
eration [18, 19], particularly in E2E ASR systems. Our current
research also explores open-vocabulary decoding in a WFST
framework, in which novel words may be included in a lattice
and derived phrase alternatives. These advances enable new ap-
plications, e.g. audio search or machine-assisted transcription,
that can be designed to mitigate inevitable errors in 1-best ASR.

7. Acknowledgments

Thanks to our many friends from ICSI:

Y Michael Ellsworth, who carefully audited the references.
% Andreas Stolcke, who clarified many evaluation practices.
“ Brian Kingsbury, who shared results from IBM Research.
% Deanna Gelbart, who wrote code for phrase alternatives.

docker run mod9/asr engine --help

help@mod9.io
+1 (HUH)ASK-ARLO

