Theoretical
Computer Science

ELSEVIE Theoretical Computer Science 231 (2000) 17-32

www.elsevier.com/locate/tcs

The design principles of a weighted finite-state
transducer library

Mehryar Mohri*, Fernando Pereira, Michael Riley

AT&T Labs-Research, 180 Park Avenue, Florham Park,
NJ 07932-0971, USA

Abstract

We describe the algorithmic and software design principles of an object-oriented library for
weighted finite-state transducers. By taking advantage of the theory of rational power series, we
were able to achieve high degrees of generality, modularity and irredundancy, while attaining
competitive efficiency in demanding speech processing applications involving weighted automata
of more than 107 states and transitions. Besides its mathematical foundation, the design also draws
from important ideas in algorithm design and programming languages: dynamic programming and
shortest-paths algorithms over general semirings, object-oriented programming, lazy evaluation
and memoization. (©) 2000 Published by Elsevier Science B.V. All rights reserved.

Keywords: Weighted automata; Finite-state transducers; Rational power series;
Speech recognition

1. Introduction

Finite-state techniques have proven valuable in a variety of natural-language process-
ing applications [5-11, 14, 16, 18, 19, 28, 32, 33, 36, 38, 39]. However, speech processing
imposes requirements that were not met by any existing finite-state library. In partic-
ular, speech recognition requires a general means for managing uncertainty: all levels
of representation, and all mappings between levels, involve alternatives with different
probabilities, since there is uncertainty in the interpretation of the speech signal at all
levels. Previous speech recognition algorithms and systems relied on “ad hoc” methods
for combining finite-state representations with uncertainty. However, by taking advan-
tage of the theory of rational power series, we were able to develop a library for
building and applying weighted finite-state transducers that can represent together all

* Corresponding author. Tel.: +1-973-360-8536; fax: +1-973-360-8092.
E-mail address: mohri@research.att.com (M. Mohri)

0304-3975/00/$ - see front matter (©) 2000 Published by Elsevier Science B.V. All rights reserved
PII: S0304-3975(99)00014-6

18 M. Mohri et al.| Theoretical Computer Science 231 (2000) 17-32

the finite-state and uncertainty management operations in speech recognition while cre-
ating the opportunity for hitherto unrecognized optimizations and achieving competitive
or superior performance in many speech recognition tasks [23, 24, 30].

This paper focuses on the overall design of the library starting from its mathemat-
ical foundation, rather than on specific algorithms or applications, which have been
described elsewhere [18, 21, 23-25,27,30]. Although our initial motivation was to im-
prove the tools available for speech recognition, we aimed always for the highest degree
of generality compatible with the mathematical foundation and with the efficiency de-
mands of the application. By basing our datatypes on the least restrictive algebraic
structures compatible with the desired algorithms, we were able to avoid redundant
implementations of the same generic algorithm on related but distinct datatypes, thus
creating a design with a minimal, highly modular core of algorithms. In addition, by
using mathematically defined datatypes, we can abstract away from implementation
details in most of the user-visible parts of the library, while being able to support a
variety of implementations with different performance characteristics for datatypes and
operations.

One of the central steps of program design is to factor the task under study into
algorithm and data structures. We suggest here a mathematical analogue of that prin-
ciple: the separation of algebra and algorithms. In other words, our algorithms should
be designed to work in as general an algebraic structure as possible.

We start by outlining the mathematical foundation for the library in Section 2. Oper-
ating at the higher level of generality of weighted finite-state transducers requires new
algorithms that are not always straightforward extensions of the corresponding classical
algorithms for unweighted automata, as discussed in Section 3.1. In particular, we use
the example of e-removal in Section 3.2 to illustrate how that higher level of generality
can be attained efficiently by using general shortest-paths computations over semirings.

The efficiency of the library in some applications depends crucially on delaying
the full computation of operation results until they are needed. While this idea had
been used in previous finite-state tools, for instance the on-demand determinization in
egrep [2], our library uses lazy evaluation for all operations satisfying certain locality
constraints, as explained in Section 3.3.

These mathematical and algorithmic considerations led to a set of general operations
on a simple and general automaton datatype with a range of possible implementations,
which are discussed in Section 4.

Finally, in Section 5, we present in more detail the requirements and current status
of our main application, speech recognition, and illustrate with an application of the
library to a simplified version of a typical speech-processing task.

2. Mathematical foundations

The generality of our library derives from the algebraic concepts of rational power
series and semiring. A semiring (K,®,®,0,1) is a set K equipped with two binary

M. Mohri et al.| Theoretical Computer Science 231 (2000) 17-32 19

operations @ and ® such that (K, ®,0) is a commutative monoid, (K,®, 1) is a (pos-
sibly non-commutative) monoid, ® distributes over @, and 0 ®x=x®0=0 for any
x € K. Informally, a semiring is a ring that may lack negation. In the following, we
will often call weights the elements of a semiring.

A formal power series S:x+— (S,x) is a function from a free monoid X* to a
semiring K. Rational power series are those formal power series that can be built
by rational operations (concatenation, sum and Kleene closure) from the singleton
power series given by (S,x)=k, (S,y)=0 if x#y for x€ Z*, k€K. The rational
power series are exactly those formal power series that can be represented by weighted
automata [35].

Weighted automata are a generalization of the notion of automaton: each transition
of a weighted automaton is assigned a weight in addition to the usual label(s). More
formally, a weighted acceptor over a finite alphabet X and a weight semiring K is
a finite directed graph with nodes representing states and arcs representing transitions
in which each transition ¢ is labeled with an input i(¢) € 2 and a weight w(¢) € K.
Furthermore, each state ¢ has an initial weight A(q) € K and a final weight p(q) € K.
In a weighted transducer, each transition ¢ has also an output label o(¢) € 4* where 4 is
the transducer’s output alphabet. A state ¢ is initial if A(q)# 0, and final if p(q)#0.'

A weighted acceptor A4 defines a rational power series S(4) as follows. For each
input string x, let P(x) be the set of transition paths p=t ---, from an initial state
ip to a final state f, such that x=i(t)---i(¢,,). Each such path assigns x the weight
w(p):l(ip)®(®j w(t))® p(fp). A similar definition can be given for a weighted
transducer 7', except that S(7) is now a rational power series over a semiring of
rational power series, those mapping transducer output strings to weights [34].

Most of the algorithms of our library work with arbitrary semirings or with semirings
from mathematically defined subclasses (closed semirings, K-closed semirings [20]). To
instantiate the library for a particular semiring K, we just need to give computational
representations for the semiring elements and operations. Library algorithms, for in-
stance composition, e-removal, determinization and minimization, work without change
over different semirings because of their foundation in the theory of rational power
series [18].

For example, the same power series determinization algorithm and code [18] can
be used to determinize transducers [17], weighted transducers, weighted automata en-
countered in speech processing [23] and weighted automata using the probability op-
erations. To do so, one just needs to use the algorithm with the string semiring
(Z*U {00}, A, -, 00,¢€) [21] in the case of transducers, with the semirings (R, +,-,0,1)
and (R;,min,+,00,0) in the other cases, and with the cross product of the string

! For convenience of implementation, and without loss of generality (initial weights can be simulated with
¢ transitions), the automata supported by the library have a single initial state, with initial weight 1. Also,
we allow the input label of a transition to be ¢ and restrict output labels to 4U {¢} for practical reasons
related to the efficient implementation of rational operations and composition. As is well known, the theory
can be extended to cover those cases.

20 M. Mohri et al.| Theoretical Computer Science 231 (2000) 17-32

Fig. 1. Determinization over (R, +,-,0,1).

semiring and one of these semirings in the case of weighted transducers. Fig. 1 shows
a weighted acceptor over (R,+,-,0,1) and its determinization.

3. Algorithms

3.1. Weighted automata algorithms

Although algorithms for weighted automata are closely related to their better-known
unweighted counterparts, they differ in crucial details. One of the important features
of our finite-state library is that most of its algorithms operate on general weighted
automata and transducers.

We briefly outlined in the previous section the mathematical foundation for weighted
automata, and how it allows us to write general algorithms that are independent of the
underlying algebra. Owing to this generality, weights may be numbers, but also strings,
sets, or even regular expressions. Depending on the algorithms, some restrictions apply
to the semirings used. For instance, some algorithms require commutative semirings,
meaning that ® is commutative; others require closed semirings, in which infinite
addition is defined and behaves like finite addition with respect to multiplication.

Shortest-paths algorithms play an essential role in applications, being used to find
the “best” solution in the set of possible solutions represented by an automaton (for
instance, the best string alignment or the best recognition hypothesis), as we shall see in
Section 5.1. Therefore, we developed a general framework for single-source shortest-
paths algorithms based on semirings that leads to a single generic algorithm [20].
This generic algorithm computes the single-source shortest distance when weights are
numbers, strings, or subsets of a set. These different cases are related to the computation
of minimal deterministic weighted automata [21].

Since the general framework for solving all pairs shortest-paths problems — closed
semirings — is compatible with the abstract notion of weights we use, we were able
to include an efficient version of the generic algorithm of Floyd-Warshall [1,3] in
our library. Using the same algorithm and code, we can provide the all-pairs shortest

M. Mohri et al.| Theoretical Computer Science 231 (2000) 17-32 21

Fig. 2. Weighted automaton and its e-removal.

distances when weights are real numbers representing, for example, probabilities, but
also when they are strings or regular expressions. This last case is useful to generate
efficiently a regular expression equivalent to a given automaton. The Floyd—Warshall
algorithm is also useful in the general e-removal algorithm we will now present as an
example.

3.2. Example: e-removal

Fig. 3 shows the pseudocode of a generic e-removal algorithm for weighted automata.
Given a weighted automaton M, the algorithm returns an equivalent weighted automa-
ton M, without e-transitions. Transy[s] denotes the set of transitions leaving state s
in automaton M, Next(z) denotes the destination state of transition ¢, i(z) denotes its
input label, and w(¢) its weight. Lines 1 and 2 extract from M; the subautomaton M,
containing all ¢ transitions in M; and the subautomaton M, containing all the non-¢
transitions. Line 3 applies the general all-pairs shortest distance algorithm CLOSURE to
M, to derive the e-closure G,. The nested loops starting in lines 4, 5 and 6 iterate over
all pairs of an e-closure transition e and a non-¢ transition ¢ such that the destination
of e is the source of ¢. Line 7 looks in M, for a transition # with label i(¢) from
e’s source from #’s destination if it exists, or creates a new one with weight 0 if it
does not. This transition is the result of extending ¢ “backwards” with the M; e-path
represented by e-closure transition e. Its weight, updated in line 8, is the semiring sum
of such extended transitions with a given source, destination and label.

In most speech-processing applications, the appropriate weight algebra is the tropi-
cal semiring [37]. Weights are positive real numbers representing negative logarithms
of probabilities. Weights along a path are added; when several paths correspond to
the same string, the weight of the string is the minimum of the weights of those
paths. Fig. 2 illustrates the application of e-removal to weighted automata over the
tropical semiring. The example shows that the new algorithm generalizes the classi-
cal unweighted algorithm by ensuring that the weight of any string accepted by the
automaton is preserved in the e-free result.

22 M. Mohri et al. | Theoretical Computer Science 231 (2000) 17-32

M, — M|{e}
M, — Mi|s« 1
G, «— CLOSURE(M;)
for p — 1 to |V]
do for each e € Transg,[p]
do for cach ¢ € Trans), [Next(e)] ANi(t) #¢
do #' — FiNDTRrANs(i(¢), Next(?), Transy, [p])
w(t') — w(t') & w(t) @ w(e)

0 3N LW~

Fig. 3. Pseudocode of the general ¢-removal algorithm.

As noted before, the computation of the ¢-closure requires the computation of the all-
pairs shortest distances in M,. In the case of idempotent semirings such as the tropical
semiring, the most efficient algorithm available is Johnson’s algorithm which is based
on the algorithms of Dijkstra and Bellman-Ford [3]. The running time complexity of
Johnson’s algorithm is O(|Q]* log|Q| + |Q||E|) when using Fibonacci heaps, but we
use instead the more general but less efficient Floyd—Warshall algorithm because it
supports non-idempotent closed semirings. When M, is acyclic, we use the linear time
topological-sort algorithm, which also works with non-idempotent semirings [20].

Our implementation of the algorithm is in fact somewhat more complex: we first de-
compose M, into strongly connected components, apply the Floyd—Warshall algorithm
to each component, and then apply the acyclic algorithm to the component graph of
M, to compute the final result.

Our choice of the most general implementation was also guided by experimentation:
in practice, each strongly connected component of M, is small relative to M,’s overall
size, and therefore the use of the Floyd—Warshall algorithm does not seriously impact
efficiency.

3.3. Lazy algorithms

Most of the library’s main functions have lazy implementations, meaning that their
results are computed only as required by the operations using those results. Lazy exe-
cution is very advantageous when a large intermediate automaton is constructed in an
application but only a small part of the automaton needs to be visited for any particular
input to the application. For instance, in a speech recognizer, several weighted trans-
ducers — the language model, the dictionary, the context-dependent acoustic models —
are composed into a potentially huge transducer, but only a very small part of it is
searched when processing a particular utterance [30].

The main precondition for a function to have a lazy implementation is that the
function be expressible as a local computation rule, in the sense that the transitions
leaving a particular state in the result be determined solely by their source state and
information from the function’s arguments associated to that state. For instance, com-
position has a lazy implementation, as we will see in Section 3.4 below. Similarly,

M. Mohri et al. | Theoretical Computer Science 231 (2000) 17-32 23
@ a:a /1\ b /2-\ C:E f;\ d:d @
-/ N A\

. ad . e . da .

Fig. 4. Composition inputs.

union, concatenation and Kleene closure can be computed on demand, and so can
determinization.

3.4. Example: lazy composition

Composition generalizes acceptor intersection. States in the composition 707, of
Ty and T are identified with pairs of a state of 7} and a state of 7,. Leaving aside
transitions with ¢ inputs or outputs for the moment, the following rule specifies how
to compute a transition of 7} o 7, from appropriate transitions of 7 and T,

a:b/w b:c/w a:c/(w @wy)
(g1 gy and g2 T)= (q1.g2) T (gl.4h).

where s =22 ¢ represents a transition from s to ¢ with input x, output y and weight w.
Clearly, this computation is local, and can thus be used in a lazy implementation of
composition.

Transitions with ¢ labels in 77 or 7, add some subtleties to composition. In general,
output and input &’s can be aligned in several different ways: an output ¢ in 77 can
be consumed either by staying in the same state in 7, or by pairing it with an input ¢
in T; an input ¢ in 7, can be handled similarly. For instance, the two transducers in
Fig. 4 can generate all the alternative paths in Fig. 5. However, the single bold path is
sufficient to represent the composition result, shown separately in Fig. 6. The problem
with redundant paths is not only that they increase unnecessarily the size of the result,
but also they fail to preserve path multiplicity: each pair of compatible paths in T
and 7, may yield several paths in 7} o 7. If the weight semiring is not idempotent,
that leads to a result that does not satisfy the algebraic definition of composition:

[Ty 0 To(u,w) = €D [T1)(u,v) @ [T2](v, w).
We solve the path-multiplicity problem by mapping the given composition into a
new composition

TioT,—T oFoT,

in which F is a special filter transducer and the T/ are versions of the 7; in which
the relevant ¢ labels are replaced by special “silent transition” symbols ¢;. The bold
path in Fig. 5 is the only one allowed by the filter in Fig. 7 for the input transducers

in Fig. 4.

24 M. Mohri et al. | Theoretical Computer Science 231 (2000) 17-32

ad ™\ e
@ : Ll (el:el)'l’,z

Fig. 5. Redundant composition paths.

Fig. 6. Composition output.

Fig. 7. Composition filter.

Clearly, all the operations involved in the filtered composition are local, therefore
they can be performed on demand, without needing to perform explicitly the replace-
ment of 7; by T/. More details on filtered composition can be found elsewhere [22, 27].

4. Software design

Our library was designed to meet two important requirements:

e Algorithms that operate on automata should do so only through abstract accessor
and mutator operations, which in turn operate on the internal representations of those

automata.

M. Mohri et al. | Theoretical Computer Science 231 (2000) 17-32 25

e Algorithms that operate on weights should do so solely through abstract operations
that implement the weight semiring.

We motivate and describe these two requirements below. Furthermore, the demand-

ing nature of our applications imposes the constraint that these abstractions add little

computational burden compared to more specialized architectures.

4.1. Finite-state objects

Requiring algorithms to operate on automata solely through abstract accessors and
mutators has three benefits: it allows the internal representation of automata to be hid-
den, it allows generic algorithms that operate on multiple finite-state representations
and it provides the mechanism for creating and using lazy implementations of algo-
rithms. To illustrate these points, consider the core accessors supported by all automata
classes in the library:

e fsm.start (), which returns the initial state of fsm;

e fsm.final(state), which returns the final weight of state in fsm;

e fsm.arcs(state), which returns an iterator over the transitions leaving state in fsm.
The iterator is itself an object supporting the next operation, which returns (a pointer
to) each transition from state in turn.

A state is specified by an integer index; a transition is specified by a structure
containing an input label, an output label, a weight and a next state index.?

Clearly, a variety of automata implementations meet this core interface. As a simple
example, the transitions leaving a state could be stored in arrays or in linked lists. By
hiding the automaton’s implementation from its user we gain the usual advantages of
separating interfaces from implementations: we can change the representation as we
wish and, so long as we do not change the object interface, the code that uses it still
runs.

In fact, it proves very useful to have multiple automata implementations in the same
library. For example, one class of automata in the library provides mutating operations
such as adding states and arcs, by using an extensible vector representation of states
and transitions that supports efficient appends. Another class, for read-only automata,
uses fixed state and transition arrays that can be efficiently memory-mapped from files.
A third class, also read-only, stores states and transitions in a compressed form to save
space, and uncompresses them on demand when they are accessed.

Our algorithms are written generically, in that they assume that automata support
the core operations above and as little else as necessary. For example, some classes of
automata support the fsm.numstates () operation that returns fsm’s number of states,
while others do not (we will see an example in a moment). Where possible and
reasonably efficient, we write our algorithms to avoid using such optional operations.
In this way, they will work on any automaton class. On the other hand, if it is really

2 Using integer indices allows referring to states that may not have yet been constructed in automata being
created by lazy algorithms.

26 M. Mohri et al.| Theoretical Computer Science 231 (2000) 17-32

necessary to use fsm.numstates (), then at least all automata classes that support that
operation operation will work.>*

The restricted set of core operations above was motivated by the need to support
lazy implementations of algorithms. In particular, the operations are local if we accept
the convention that no state should be visited that has not been discovered from the
start state. Thus the automaton object that lies behind this interface need not have
a static representation. For example, we can implement the result of the composition
of two automata 4 and B as a delayed composition automaton C =FSMCompose(4,B).
When C.start() is called, the start state can be constructed on demand by first calling
A.start() and B.start() and then pairing these states and hashing the pair to a new
constructed state index, which C.start() returns. Similarly, C.final() and C.arcs()
can be computed on-demand by first calling these operations on 4 and B and then
constructing the appropriate result for C to return. If we had included numstates as a
core operation, the composition would have to be fully expanded immediately to count
its number of states. Since a user might do this inadvertently, we do not provide that
operation for automata objects resulting from composition.® The core operations, in
fact, can support lazy automata with an infinite number of states, so long as only a
finite portion of such automata is traversed.

To achieve the required efficiency for the above interface, we ensure that each call to
the transition iterator involves nothing more than a pointer increment in the automata
classes intended for demanding applications such as speech recognition. Since most of
the time used for automata operations in those applications is spent iterating over the
transitions leaving various states, that representation is usually effective.

4.2. Weight objects

As mentioned earlier, many of the algorithms in our library will work with a variety
of weight semirings. Our design encourages writing algorithms over the most general
semiring by making the weights an abstract type with suitable addition and multipli-
cation operations and identity elements. In this way, we can switch between, say, the
tropical semiring and the probability semiring by just using a different implementation
of the abstract type. For efficiency, the weight operations are represented by macros in
our C version and by inline member functions in the C++ version under development.

3 For those that do not, our current C implementation will issue a run-time error, while run-time type-
checking can be used to circumvent such errors. In our new C++ version, we will use compile-time
type-checking where possible

4 This design philosophy has some similarities with that of other modern software toolkits such as the
C++ Standard Template Library [26]

3 The user can always copy this lazy automaton into an instance of a static automata class that supports
the numstates operation. In other words, we favor explicit conversions to implicit ones.

M. Mohri et al.| Theoretical Computer Science 231 (2000) 17-32 27

4.3. Coverage

The library operates on weighted transducers; weighted acceptors are represented
as restrictions of the identity transducer to the support of the acceptor. In our chosen
representation, weighted automata have a single initial state; whether a state is accepting
or not is determined by the state’s final weight. The library includes:

Rational operations: union, concatenation, Kleene closure, reversal, inversion and
projection.

Composition: transducer composition [22], and acceptor intersection, as well as tak-
ing the difference between a weighted acceptor and an unweighted DFA.

Equivalence transformations: e-elimination, determinization [17, 18] and minimiza-
tion for unweighted (both the general case [1] and the more efficient acyclic case [28])
and weighted acceptors and transducers [15, 18], removal of inaccessible states and
transitions.

Search: best path [20], n-best paths, pruning (remove all states and transitions that
occur only on paths of weight greater by a given threshold than the best path).

Representation and storage management: create and convert among automata repre-
sentations with different performance tradeoffs; also, as discussed in Section 3.3, many
of the library functions can have their effects delayed for lazy execution, and functions
are provided to cache and force delayed objects, inspired by similar features in lazy
functional programming.

In addition, a comprehensive set of support functions is provided to manipulate the
internal representations of automata (for instance, topological sorting), for converting
between internal and external representations, and for accessing and mutating the com-
ponents of an automaton (states, transitions, initial state and accepting weights).

For convenient experimentation, each of the library’s main functions has a Unix shell-
level counterpart that operates between external automata representations, allowing the
expression of complex operations on automata as shell pipelines. The concrete example
in the next section is presented in terms of those commands for simplicity.

These Unix shell-level commands are available for download for a variety of com-
puter architectures from the AT&T Labs-Research web site [40] along with documen-
tation, tutorials, and exercises.

5. Language processing applications

As noted in Section 1, finite-state methods have been used very successfully in a
variety of language-processing applications. However, until we developed our library,
those applications had not included speech recognition.

Current speech-recognition systems rely on a variety of probabilistic finite-state mod-
els, for instance n-gram language models [29], multiple-pronunciation dictionaries [13],
and context-dependent acoustic models [12]. However, most speech recognizers do not
take advantage of the shared properties of the information sources they use. Instead,
they rely on special-purpose algorithms for specific representations. That means that the

28 M. Mohri et al.| Theoretical Computer Science 231 (2000) 17-32

recognizer has to be rewritten if representations are changed for a new application or
for increased accuracy or performance. Experiments with different representations are
therefore difficult, as they require changing or even completely replacing fairly intricate
recognition programs.

This situation is not too different from that in programming-language parsing before
lex and yacc [2]. Furthermore, specialized representations and algorithms preclude cer-
tain global optimizations based on the general properties of finite-state models. Again,
the situation is similar to the lack of general methods in programming-language pars-
ing before the development of the theory of deterministic context-free languages and
of general grammar optimization techniques based on it.

As noted in Section 1, in speech recognition it is essential that alternative ways of
generating or transforming a string be weighted by the likelihood of that generation
or transformation. Therefore, the crucial step in applying general finite-state techniques
to speech recognition problems was to move from regular languages to rational power
series, and from unweighted to weighted automata.® The main challenges in this move
have been the generalization of core algorithms to the weighted case, and their imple-
mentation with the degree of efficiency required in speech recognition.

5.1. Simple example: alignment

As a simple example of the use of the library in speech processing, we show how to
find the best alignment between two strings using a weighted edit distance, which can
be applied for instance to finding the best alignment between the dictionary phonetic
transcription of a word string and the acoustic (phone) realization of the same word
string, as exemplified in Fig. 8. Fig. 9 shows a domain-dependent table of insertion,
deletion and substitution weights between phonemes and phones. In a real application,
those weights would be derived automatically from aligned examples using a suitable
machine-learning method [13,31]. The minimum edit distance between two strings can
be simply defined by the recurrences

d(a’% ") =0,

dy(a’,b/)=d(@ ", b/ ") + w(a;, b)) (substitution),
dy(a’, b))y =d(a "', b/) + w(a;, €) (deletion),
di(a’,b/)=d(a',b’~") + w(e, b;) (insertion),

d(a',b) = min{d,(a’,b),d(a’,b/),di(a’, b))} .

The possible one symbol edits (insertion, deletion or substitution) and their weights
can be readily represented by a one-state weighted transducer. If the transducer is in
file T.fst and the strings to be aligned are represented by acceptors A.fsa and B.fsa,
the best alignment is computed simply by the shell command

fsmcompose A.fsa T.fst B.fsa | fsmbestpath >C.fst

© Weighted acceptors and transducers have also been used in image processing [4].

M. Mohri et al.| Theoretical Computer Science 231 (2000) 17-32 29

Baseform Phone Word

p pr purpose
er er

p pel

- pr

ax ix

s s

ae eh and

n n

d -

r r respect
ih ix

s s

P pel

- pr

eh eh

k kel

t tr

Fig. 8. String alignment.

Baseform Phone Weights Type

a; b j W(Cl is b j)
ae eh 1 substitution
d e 2 deletion

pr 1 insertion

Fig. 9. Weighted edit distance.

Abbreviated examples of the inputs and outputs to this command are shown in
Fig. 10.

The correctness of this implementation of minimum edit distance alignment depends
on the use of suitable weight combination rules in automata composition, specifically
those of the tropical semiring, which was discussed in Section 3.2.

Alignment by transduction can be readily extended to situations in which edits in-
volve longer strings or are context-dependent, as those shown in Fig. 11. In such cases,
states in the edit transducer encode appropriate context conditions. Furthermore, a set
of weighted edit rules like those in Fig. 11 can be directly compiled into an appropriate
weighted transducer [25].

30 M. Mohri et al.| Theoretical Computer Science 231 (2000) 17-32

Afsa B.fsa

ae:eh/1 n:n/0 d:eps/3 /7
© ® ® O

Tist Cfz

Fig. 10. Alignment automata.

Baseform(s) Phone(s) Weights Type

a; b j w(a,-, b j)
P pel pr 1 expansion
eh m em 3 contraction
r eh ax r 2 transposition
tvV__ v dx 0 context-dependency

Fig. 11. Generalized weighted edit distance.

6. Conclusion

We presented a very general finite-state library based on the notions of semiring
and of rational power series, which allowed us to use the same code for a variety of
different applications requiring different semirings. The current version of the library
is written in C, with the semiring operations defined as macros. Our new version is
being written in C++ to take advantage of templates to support more general transition
labels and multiple semirings in a single application.

Our experience shows that it is possible and in fact sometimes easier to implement
efficient generic algorithms for a class of semirings than to implement specialized
algorithms for particular semirings. Similarly, lazy versions of algorithms are often
easier to implement than their traditional counterparts.

We tested the efficiency of our library by building competitive large-vocabulary
speech recognition applications involving very large automata (>10° states, > 107
transitions) [23,24]. The library is being used in a variety of speech recognition and
speech synthesis projects at AT&T Labs and at Lucent Bell Laboratories.

References

[1] A.V. Aho, JE. Hopcroft, J.D. Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974

M. Mohri et al. | Theoretical Computer Science 231 (2000) 17-32 31

[2] A.V. Aho, R. Sethi, J.D. Ullman, Compilers: Principles, Techniques and Tools, Addison-Wesley:
Reading, MA, 1986.

[3] T. Cormen, C. Leiserson, R. Rivest, Introduction to Algorithms, The MIT Press, Cambridge, MA, 1992.

[4] K. Culik II, J. Kari, Digital images and formal languages, in: G. Rozenberg, A. Salomaa (Eds.),
Handbook of Formal Languages, Springer, Berlin, 1997, pp. 599-616,

[5] M. Gross, The Use of Finite Automata in the Lexical Representation of Natural Language, Lecture
Notes in Computer Science, vol. 377, Springer, Berlin, 1989.

[6] M. Gross, D. Perrin (Eds.), Electronic Dictionnaries and Automata in Computational Linguistics, Lecture
Notes in Computer Science, vol. 377, Springer, Berlin, 1989.

[71 RM. Kaplan, M. Kay, Regular Models of Phonological Rule Systems, Comput. Linguistics 20 (3)
(1994) 331-378.

[8] F. Karlsson, A. Voutilainen, J. Heikkila, A. Anttila, Constraint Grammar, A language-Independent
System for Parsing Unrestricted Text, Mouton de Gruyter, 1995.

[9] L. Karttunen, The Replace Operator, 33rd Annual Meeting of the Association for Computational
Linguistics, Association for Computational Linguistics, 1995, pp. 16-23, Distributed by Morgan
Kaufmann Publishers, San Francisco, CA.

[10] L. Karttunen, R.M. Kaplan, A. Zaenen, Two-level Morphology with Composition, in Proc. 15th Internat.
Conf. on Computational Linguistics (COLING’92), Nantes, France, COLING, 1992.

[11] K. Koskenniemi, Finite-state parsing and disambiguation, Proc. 13th Internat. Conf. on Computational
Linguistics (COLING’90), Helsinki, Finland, COLING, 1990.

[12] K.-F. Lee, Context dependent phonetic hidden Markov models for continuous speech recognition, IEEE
Trans. Acouts. Speech Signal Process. 38 (4) (1990) 599-609.

[13] A. Ljolje, M.D. Riley, Optimal speech recognition using phone recognition and lexical access, in Proc.
ICSLP, Banff, Canada, October 1992, pp. 313-316.

[14] M. Mohri, Compact representations by finite-state transducers, in 32nd Meeting of the Association for
Computational Linguistics (ACL 94), Proc. Conf. Las Cruces, NM, ACL, 1994.

[15] M. Mohri, Minimization of Sequential Transducers, Lecture Notes in Computer Science, vol. 807,
Springer, Berlin, 1994.

[16] M. Mohri, Syntactic Analysis by local grammars automata: an efficient algorithm, in Proc. Internat.
Conf. on Computational Lexicography (COMPLEX 94), Linguistic Institute, Hungarian Academy of
Science, Budapest, Hungary, 1994.

[17] M. Mohri, On some applications of finite-state automata theory to natural language processing, J. Natural
Language Eng. 2 (1996) 1-20.

[18] M. Mohri, Finite-State Transducers in Language and Speech Processing, Comput. Linguistics 23 (2)
(1997) 269-311.

[19] M. Mohri, On the use of sequential transducers in natural language processing, in: E. Roche, Y. Schabes
(Eds.), Finite-State Language Processing, MIT Press, Cambridge, MA, 1997, 355-382.

[20] M. Mohri, General Algebraic Framework and Algorithms for Shortest Distance Problems. Technical
Memorandum, AT&T Labs-Research, 981210-TM, 1998.

[21] M. Mohri, Minimization algorithms for sequential transducers, Theoret. Comput. Sci. (2000) to appear.

[22] M. Mohri, F.C.N Pereira, M. Riley, Weighted automata in text and speech processing, in ECAI-96
Workshop, Budapest, Hungary, ECAIL, 1996.

[23] M. Mohri, M. Riley, Weighted determinization and minimization for large vocabulary speech
recognition, in Eurospeech’97, Rhodes, Greece, 1997.

[24] M. Mohri, M. Riley, D. Hindle, A. Ljolje, F.C. N. Pereira, Full expansion of context-dependent networks
in large vocabulary speech recognition, in Proc. ICASSP’98, IEEE, New York, 1998.

[25] M. Mohri, R. Sproat, An efficient compiler for weighted rewrite rules, in 34th Meeting of the Association
for Computational Linguistics (ACL 96), Proc. Conf., Santa Cruz, Ca, ACL, 1996.

[26] D. Musser, A. Saini, STL Tutorial and Reference Guide, Addison-Wesley, Reading, MA, 1996.

[27] F.C.N. Pereira, M.D. Riley, Speech recognition by composition of weighted finite automata, in:
E. Roche, Y. Schabes (Eds.), Finite-State Language Processing, MIT Press, Cambridge, Ma, 1997,
pp. 431-453.

[28] D. Revuz, Minimisation of acyclic deterministic automata in linear time, Theoret. Comput. Sci. 92
(1992) 181-189.

32 M. Mohri et al. | Theoretical Computer Science 231 (2000) 17-32

[29] G. Riccardi, E. Bocchieri, R. Pieraccini, Non-deterministic stochastic language models for speech
recognition, in Proc. IEE Internat. Conf. on Acoustics, Speech and Signal Processing, vol. 1, IEEE,
New York, 1995, pp. 237-240

[30] M. Riley, F. Pereira, M. Mohri, Transducer composition for context-dependent network expansion, in
Eurospeech’97, Rhodes, Greece, 1997.

[31] E. Ristad, P. Yianilos, Finite growth models, Technical Report CS-TR-533-96, Department of Computer
Science, Princeton University, 1996.

[32] E. Roche, Analyse Syntaxique Transformationnelle du Francais par Transducteurs et Lexique-
Grammaire, Ph.D. Thesis, Université Paris 7, 1993.

[33] E. Roche, Two parsing methods by means of finite state tansducers, in Proc. 16th Internat. Conf. on
Computational Linguistics (COLING’94), Kyoto, Japan, COLING, 1994.

[34] A. Salomaa, M. Soittola, Automata-Theoretic Aspects of Formal Power Series, Springer, New York,
1978.

[35] M.P. Schiitzenberger, On the definition of a family of automata, Inform. Control 4 (1961).

[36] M. Silberztein, Dictionnaires électroniques et analyse automatique de textes: le systeme INTEX, Masson,
Paris, France, 1993.

[37] I. Simon, Limited subsets of a free monoid, in Proc. 19th Annual Symp. on Foundation of Computer
Science, 1978, pp. 143-150.

[38] R. Sproat, Morphology and Computation, The MIT Press, Cambridge, MA, 1992.

[39] R. Sproat, A finite-state architecture for tokenization and grapheme-to-phoneme conversion in
multilingual text analysis, in Proc. ACL SIGDAT Workshop, Dublin, Ireland, ACL, 1995.

[40] M. Mohri, F. Pereira, M. Riley, FSM Library — General-Purpose Finite. State Machine Software tools,
http://www.research.att.com/tools/fsm, 1998.

