--- license: mit language: - de - en - ja - ru - is - cs - zh pipeline_tag: translation --- facebook wmt21 model [facebook/wmt21-dense-24-wide-en-x](https://huggingface.co/facebook/wmt21-dense-24-wide-en-x/) as safetensors for testing. so far, looks quite good, cf. [comet](https://github.com/Unbabel/COMET) scores: ```code +-----------------------------------------+-----------------+ | File | Overall Score | +=========================================+=================+ | Capybara_de_wmt21_scored.jsonl | 0.848375 | +-----------------------------------------+-----------------+ | Capybara_de_GPT4_scored.jsonl | 0.846241 | +-----------------------------------------+-----------------+ | Capybara_de_Claude-3-Opus_scored.jsonl | 0.84568 | +-----------------------------------------+-----------------+ | Capybara_de_deepl_scored.jsonl | 0.843937 | +-----------------------------------------+-----------------+ | Capybara_de_GPT3.5_scored.jsonl | 0.843922 | +-----------------------------------------+-----------------+ | Capybara_de_occiglot_scored.jsonl | 0.83135 | +-----------------------------------------+-----------------+ | Capybara_de_discolm_scored.jsonl | 0.830676 | +-----------------------------------------+-----------------+ | Capybara_de_nbbl_scored.jsonl | 0.829132 | +-----------------------------------------+-----------------+ | Capybara_de_wmt19_scored.jsonl | 0.824847 | +-----------------------------------------+-----------------+ | Capybara_de_t5madlad_scored.jsonl | 0.818146 | +-----------------------------------------+-----------------+ | Capybara_de_mixtral_scored.jsonl | 0.807397 | +-----------------------------------------+-----------------+ | Capybara_de_TowerInstruct2_scored.jsonl | 0.788971 | +-----------------------------------------+-----------------+ ``` also, cf. comparison on a few snippets: https://huggingface.co/spaces/cstr/compare_translations regarding quantization: on linux, or windows wsl (with accelerate, triton), you can use quantized versions [q8](https://huggingface.co/cstr/wmt21-dense-24-wide-en-x-stq8) [q4](https://huggingface.co/cstr/wmt21-dense-24-wide-en-x-stq4) on apple mac mps, you can use [CTranslate2](https://github.com/OpenNMT/CTranslate2) like this: first convert the model: ```shell ct2-transformers-converter --model cstr/wmt21-dense-24-wide-en-x-st --quantization int8_float32 --output_dir wmt21ct2_int8 ``` then run e.g. in python: ```python import ctranslate2 import transformers translator = ctranslate2.Translator("wmt21ct2_int8") tokenizer = transformers.AutoTokenizer.from_pretrained("facebook/wmt21-dense-24-wide-en-x") tokenizer.src_lang = "en" source = tokenizer.convert_ids_to_tokens(tokenizer.encode("Choose the correct verb form to complete the sentence: The birds ____________ (to fly) to the south for the winter.")) target_prefix = [tokenizer.lang_code_to_token["de"]] results = translator.translate_batch([source], target_prefix=[target_prefix]) target = results[0].hypotheses[0][1:] print(tokenizer.decode(tokenizer.convert_tokens_to_ids(target))) ```