# wangchanberta-base-att-spm-uncased-finetune-qa Finetuning `wangchanberta-base-att-spm-uncased` with the training set of `iapp_wiki_qa_squad` and `thaiqa` (removed examples which have cosine similarity with validation and test examples over 0.8). Benchmarks shared on [wandb](https://wandb.ai/cstorm125/wangchanberta-qa) using validation and test sets of `iapp_wiki_qa_squad`. Trained with ``` export WANDB_PROJECT=wangchanberta-qa export MODEL_NAME=wangchanberta-base-att-spm-uncased python train_question_answering_lm_finetuning.py \ --model_name $MODEL_NAME \ --dataset_name iapp_thaiqa \ --output_dir $MODEL_NAME-finetune-iapp_thaiqa-model \ --log_dir $MODEL_NAME-finetune-iapp_thaiqa-log \ --lowercase \ --pad_on_right \ --fp16 export MODEL_NAME=xlm-roberta-base python train_question_answering_lm_finetuning.py \ --model_name $MODEL_NAME \ --dataset_name iapp_thaiqa \ --output_dir $MODEL_NAME-finetune-iapp_thaiqa-model \ --log_dir $MODEL_NAME-finetune-iapp_thaiqa-log \ --model_max_length 416 \ --pad_on_right \ --fp16 export MODEL_NAME=bert-base-multilingual-cased python train_question_answering_lm_finetuning.py \ --model_name $MODEL_NAME \ --dataset_name iapp_thaiqa \ --output_dir $MODEL_NAME-finetune-iapp_thaiqa-model \ --log_dir $MODEL_NAME-finetune-iapp_thaiqa-log \ --pad_on_right \ --fp16 export MODEL_NAME=wangchanberta-base-wiki-spm python train_question_answering_lm_finetuning.py \ --model_name $MODEL_NAME \ --dataset_name iapp_thaiqa \ --output_dir $MODEL_NAME-finetune-iapp_thaiqa-model \ --log_dir $MODEL_NAME-finetune-iapp_thaiqa-log \ --pad_on_right \ --fp16 ```