--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards license: mit language: - cs --- # Model Card for mt5-base-binary-cs-iiia This model is fine-tuned for binary text classification of Supportive Interactions in Instant Messenger dialogs of Adolescents in Czech. ## Model Description The model was fine-tuned on a dataset of Czech Instant Messenger dialogs of Adolescents. The classification is binary and the model outputs 'positive' or 'negative': Supportive Interactions present or not. The inputs are a target utterance and its bi-directional context; it's target label that of the target utterance. - **Developed by:** Anonymous - **Language(s):** cs - **Finetuned from:** mt5-base ## Model Sources - **Repository:** https://github.com/chi2024submission - **Paper:** Stay tuned! ## Usage Here is how to use this model to classify a context-window of a dialogue: ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer import torch # Target utterance test_texts = ['Utterance2'] # Bi-directional context of the target utterance test_text_pairs = ['Utterance1;Utterance2;Utterance3'] # Load the model and tokenizer checkpoint_path = "chi2024/mt5-base-binary-cs-iiia" model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)\ .to("cuda" if torch.cuda.is_available() else "cpu") tokenizer = AutoTokenizer.from_pretrained(checkpoint_path) # Define helper functions def verbalize_input(text: str, text_pair: str) -> str: return "Utterance: %s\nContext: %s" % (text, text_pair) def predict_one(text, pair): input_pair = verbalize_input(text, pair) inputs = tokenizer(input_pair, return_tensors="pt", padding=True, truncation=True, max_length=256).to(model.device) outputs = model.generate(**inputs) decoded = [text.strip() for text in tokenizer.batch_decode(outputs, skip_special_tokens=True)] return decoded # Run the prediction preds_txt = [predict_one(t,p) for t,p in zip(test_texts, test_text_pairs)] preds_lbl = [1 if x == 'positive' else 0 for x in preds_txt] print(preds_lbl) ```