csikasote's picture
Update metadata with huggingface_hub
0abd7c2 verified
metadata
base_model: openai/whisper-large-v3
library_name: transformers
license: apache-2.0
metrics:
  - wer
tags:
  - generated_from_trainer
model-index:
  - name: whisper-large-v3-natbed-non-native-model
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: natbed
          type: natbed
          config: en
          split: test
        metrics:
          - type: wer
            value: 42.4
            name: WER

whisper-large-v3-natbed-non-native-model

This model is a fine-tuned version of openai/whisper-large-v3 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8693
  • Wer: 52.1349

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.75e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 30000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.5641 0.5631 250 0.8395 70.9929
0.821 1.1261 500 0.7848 65.2830
0.6791 1.6892 750 0.7238 59.8611
0.5596 2.2523 1000 0.7156 55.1339
0.46 2.8153 1250 0.7180 54.4222
0.3263 3.3784 1500 0.7762 56.3707
0.3088 3.9414 1750 0.7282 51.8807
0.1838 4.5045 2000 0.7987 52.5246
0.1694 5.0676 2250 0.8901 53.5920
0.1054 5.6306 2500 0.8693 52.1349

Framework versions

  • Transformers 4.45.0.dev0
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1