--- base_model: openai/whisper-large-v3 library_name: transformers license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: whisper-large-v3-genbed-f results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: BembaSpeech type: BembaSpeech config: en split: test metrics: - type: wer value: 21.76 name: WER --- # whisper-large-v3-genbed-f This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4613 - Wer: 28.2294 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.75e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.4575 | 0.6605 | 250 | 0.5118 | 48.6061 | | 0.3575 | 1.3210 | 500 | 0.4580 | 41.5408 | | 0.3229 | 1.9815 | 750 | 0.3920 | 34.9542 | | 0.1937 | 2.6420 | 1000 | 0.4103 | 33.1986 | | 0.0955 | 3.3025 | 1250 | 0.4218 | 32.8368 | | 0.0943 | 3.9630 | 1500 | 0.4120 | 31.6982 | | 0.0346 | 4.6235 | 1750 | 0.4397 | 30.2724 | | 0.0123 | 5.2840 | 2000 | 0.4604 | 28.8891 | | 0.0132 | 5.9445 | 2250 | 0.4485 | 29.1658 | | 0.0025 | 6.6050 | 2500 | 0.4613 | 28.2294 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1