--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - automatic-speech-recognition - genbed - mms - generated_from_trainer metrics: - wer model-index: - name: mms-1b-nyagen-combined-model results: [] --- # mms-1b-nyagen-combined-model This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the GENBED - BEM dataset. It achieves the following results on the evaluation set: - Loss: 0.1727 - Wer: 0.2465 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 6.9978 | 0.1364 | 100 | 0.6384 | 0.5015 | | 0.482 | 0.2729 | 200 | 0.2777 | 0.3713 | | 0.3907 | 0.4093 | 300 | 0.2484 | 0.3481 | | 0.3782 | 0.5457 | 400 | 0.2290 | 0.3232 | | 0.3316 | 0.6821 | 500 | 0.2222 | 0.3148 | | 0.3158 | 0.8186 | 600 | 0.2127 | 0.3042 | | 0.3199 | 0.9550 | 700 | 0.2106 | 0.2932 | | 0.3223 | 1.0914 | 800 | 0.2013 | 0.2826 | | 0.3075 | 1.2278 | 900 | 0.1975 | 0.2709 | | 0.3015 | 1.3643 | 1000 | 0.1942 | 0.2762 | | 0.3049 | 1.5007 | 1100 | 0.1895 | 0.2729 | | 0.3029 | 1.6371 | 1200 | 0.1888 | 0.2718 | | 0.2626 | 1.7735 | 1300 | 0.1866 | 0.2683 | | 0.2803 | 1.9100 | 1400 | 0.1830 | 0.2615 | | 0.2725 | 2.0464 | 1500 | 0.1814 | 0.2626 | | 0.2732 | 2.1828 | 1600 | 0.1783 | 0.2641 | | 0.249 | 2.3192 | 1700 | 0.1828 | 0.2560 | | 0.2423 | 2.4557 | 1800 | 0.1762 | 0.2480 | | 0.2668 | 2.5921 | 1900 | 0.1732 | 0.2458 | | 0.2653 | 2.7285 | 2000 | 0.1727 | 0.2460 | | 0.2614 | 2.8649 | 2100 | 0.1749 | 0.2533 | | 0.2474 | 3.0014 | 2200 | 0.1733 | 0.2438 | | 0.2317 | 3.1378 | 2300 | 0.1767 | 0.2447 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0