--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - automatic-speech-recognition - lozgen - mms - generated_from_trainer metrics: - wer model-index: - name: mms-1b-lozgen-combined-model results: [] --- # mms-1b-lozgen-combined-model This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the LOZGEN - LOZ dataset. It achieves the following results on the evaluation set: - Loss: 0.4288 - Wer: 0.3297 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 6.5686 | 0.4065 | 100 | 3.0827 | 0.9701 | | 2.6223 | 0.8130 | 200 | 2.2379 | 0.9112 | | 1.4386 | 1.2195 | 300 | 0.6910 | 0.7809 | | 0.8073 | 1.6260 | 400 | 0.5903 | 0.5699 | | 0.651 | 2.0325 | 500 | 0.5555 | 0.5037 | | 0.655 | 2.4390 | 600 | 0.5298 | 0.4818 | | 0.6579 | 2.8455 | 700 | 0.5298 | 0.4603 | | 0.5699 | 3.2520 | 800 | 0.5160 | 0.4284 | | 0.6104 | 3.6585 | 900 | 0.5070 | 0.4320 | | 0.604 | 4.0650 | 1000 | 0.4978 | 0.4098 | | 0.5681 | 4.4715 | 1100 | 0.4975 | 0.4072 | | 0.5493 | 4.8780 | 1200 | 0.4878 | 0.4038 | | 0.581 | 5.2846 | 1300 | 0.4826 | 0.3965 | | 0.5746 | 5.6911 | 1400 | 0.4793 | 0.4242 | | 0.5238 | 6.0976 | 1500 | 0.4724 | 0.3833 | | 0.5204 | 6.5041 | 1600 | 0.4866 | 0.3864 | | 0.5563 | 6.9106 | 1700 | 0.4672 | 0.3839 | | 0.5121 | 7.3171 | 1800 | 0.4664 | 0.3719 | | 0.4774 | 7.7236 | 1900 | 0.4625 | 0.3652 | | 0.5356 | 8.1301 | 2000 | 0.4721 | 0.3693 | | 0.4385 | 8.5366 | 2100 | 0.4560 | 0.3695 | | 0.5561 | 8.9431 | 2200 | 0.4453 | 0.3594 | | 0.414 | 9.3496 | 2300 | 0.4489 | 0.3546 | | 0.4763 | 9.7561 | 2400 | 0.4525 | 0.3521 | | 0.5317 | 10.1626 | 2500 | 0.4424 | 0.3557 | | 0.4939 | 10.5691 | 2600 | 0.4398 | 0.3502 | | 0.4456 | 10.9756 | 2700 | 0.4415 | 0.3467 | | 0.4583 | 11.3821 | 2800 | 0.4502 | 0.3446 | | 0.4573 | 11.7886 | 2900 | 0.4267 | 0.3403 | | 0.398 | 12.1951 | 3000 | 0.4305 | 0.3406 | | 0.472 | 12.6016 | 3100 | 0.4268 | 0.3320 | | 0.3993 | 13.0081 | 3200 | 0.4288 | 0.3297 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0