# Copyright 2022 MosaicML LLM Foundry authors # SPDX-License-Identifier: Apache-2.0 import torch try: from llmfoundry import optim, utils from llmfoundry.data import (ConcatTokensDataset, MixtureOfDenoisersCollator, NoConcatDataset, Seq2SeqFinetuningCollator, build_finetuning_dataloader, build_text_denoising_dataloader) from llmfoundry.models.hf import (ComposerHFCausalLM, ComposerHFPrefixLM, ComposerHFT5) from llmfoundry.models.layers.attention import ( MultiheadAttention, attn_bias_shape, build_alibi_bias, build_attn_bias, flash_attn_fn, scaled_multihead_dot_product_attention, triton_flash_attn_fn) from llmfoundry.models.layers.blocks import MPTBlock from llmfoundry.models.layers.ffn import (FFN_CLASS_REGISTRY, MPTMLP, build_ffn) from llmfoundry.models.model_registry import COMPOSER_MODEL_REGISTRY from llmfoundry.models.mpt import (ComposerMPTCausalLM, MPTConfig, MPTForCausalLM, MPTModel, MPTPreTrainedModel) from llmfoundry.tokenizers import TiktokenTokenizerWrapper except ImportError as e: try: is_cuda_available = torch.cuda.is_available() except: is_cuda_available = False extras = '.[gpu]' if is_cuda_available else '.' raise ImportError( f'Please make sure to pip install {extras} to get the requirements for the LLM example.' ) from e __all__ = [ 'build_text_denoising_dataloader', 'build_finetuning_dataloader', 'MixtureOfDenoisersCollator', 'Seq2SeqFinetuningCollator', 'MPTBlock', 'FFN_CLASS_REGISTRY', 'MPTMLP', 'build_ffn', 'MPTConfig', 'MPTPreTrainedModel', 'MPTModel', 'MPTForCausalLM', 'ComposerMPTCausalLM', 'ComposerHFCausalLM', 'ComposerHFPrefixLM', 'ComposerHFT5', 'COMPOSER_MODEL_REGISTRY', 'scaled_multihead_dot_product_attention', 'flash_attn_fn', 'triton_flash_attn_fn', 'MultiheadAttention', 'NoConcatDataset', 'ConcatTokensDataset', 'attn_bias_shape', 'build_attn_bias', 'build_alibi_bias', 'optim', 'utils', 'TiktokenTokenizerWrapper', ] __version__ = '0.3.0'