# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ # This script converts an existing audio dataset with a manifest to # a tarred and sharded audio dataset that can be read by the # TarredAudioToTextDataLayer. # Please make sure your audio_filepath DOES NOT CONTAIN '-sub'! # Because we will use it to handle files which have duplicate filenames but with different offsets # (see function create_shard for details) # Bucketing can help to improve the training speed. You may use --buckets_num to specify the number of buckets. # It creates multiple tarred datasets, one per bucket, based on the audio durations. # The range of [min_duration, max_duration) is split into equal sized buckets. # Recommend to use --sort_in_shards to speedup the training by reducing the paddings in the batches # More info on how to use bucketing feature: https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/datasets.html # If valid NVIDIA DALI version is installed, will also generate the corresponding DALI index files that need to be # supplied to the config in order to utilize webdataset for efficient large dataset handling. # NOTE: DALI + Webdataset is NOT compatible with Bucketing support ! # Usage: 1) Creating a new tarfile dataset python convert_to_tarred_audio_dataset.py \ --manifest_path= \ --target_dir= \ --num_shards= \ --max_duration= \ --min_duration= \ --shuffle --shuffle_seed=1 \ --sort_in_shards \ --workers=-1 2) Concatenating more tarfiles to a pre-existing tarred dataset python convert_to_tarred_audio_dataset.py \ --manifest_path= \ --metadata_path= \ --target_dir= \ --max_duration= \ --min_duration= \ --shuffle --shuffle_seed=1 \ --sort_in_shards \ --workers=-1 \ --concat_manifest_paths \ 3) Writing an empty metadata file python convert_to_tarred_audio_dataset.py \ --target_dir= \ # any other optional argument --num_shards=8 \ --max_duration=16.7 \ --min_duration=0.01 \ --shuffle \ --workers=-1 \ --sort_in_shards \ --shuffle_seed=1 \ --write_metadata """ import argparse import copy import json import os import random import tarfile from collections import defaultdict from dataclasses import dataclass, field from datetime import datetime from typing import Any, List, Optional from joblib import Parallel, delayed from omegaconf import DictConfig, OmegaConf, open_dict try: import create_dali_tarred_dataset_index as dali_index DALI_INDEX_SCRIPT_AVAILABLE = True except (ImportError, ModuleNotFoundError, FileNotFoundError): DALI_INDEX_SCRIPT_AVAILABLE = False parser = argparse.ArgumentParser( description="Convert an existing ASR dataset to tarballs compatible with TarredAudioToTextDataLayer." ) parser.add_argument( "--manifest_path", default=None, type=str, required=False, help="Path to the existing dataset's manifest." ) parser.add_argument( '--concat_manifest_paths', nargs='+', default=None, type=str, required=False, help="Path to the additional dataset's manifests that will be concatenated with base dataset.", ) # Optional arguments parser.add_argument( "--target_dir", default='./tarred', type=str, help="Target directory for resulting tarballs and manifest. Defaults to `./tarred`. Creates the path if necessary.", ) parser.add_argument( "--metadata_path", required=False, default=None, type=str, help="Path to metadata file for the dataset.", ) parser.add_argument( "--num_shards", default=-1, type=int, help="Number of shards (tarballs) to create. Used for partitioning data among workers.", ) parser.add_argument( '--max_duration', default=None, required=True, type=float, help='Maximum duration of audio clip in the dataset. By default, it is None and is required to be set.', ) parser.add_argument( '--min_duration', default=None, type=float, help='Minimum duration of audio clip in the dataset. By default, it is None and will not filter files.', ) parser.add_argument( "--shuffle", action='store_true', help="Whether or not to randomly shuffle the samples in the manifest before tarring/sharding.", ) parser.add_argument( "--keep_files_together", action='store_true', help="Whether or not to keep entries from the same file (but different offsets) together when sorting before tarring/sharding.", ) parser.add_argument( "--sort_in_shards", action='store_true', help="Whether or not to sort samples inside the shards based on their duration.", ) parser.add_argument( "--buckets_num", type=int, default=1, help="Number of buckets to create based on duration.", ) parser.add_argument("--shuffle_seed", type=int, default=None, help="Random seed for use if shuffling is enabled.") parser.add_argument( '--write_metadata', action='store_true', help=( "Flag to write a blank metadata with the current call config. " "Note that the metadata will not contain the number of shards, " "and it must be filled out by the user." ), ) parser.add_argument( "--no_shard_manifests", action='store_true', help="Do not write sharded manifests along with the aggregated manifest.", ) parser.add_argument('--workers', type=int, default=1, help='Number of worker processes') args = parser.parse_args() @dataclass class ASRTarredDatasetConfig: num_shards: int = -1 shuffle: bool = False max_duration: Optional[float] = None min_duration: Optional[float] = None shuffle_seed: Optional[int] = None sort_in_shards: bool = True shard_manifests: bool = True keep_files_together: bool = False @dataclass class ASRTarredDatasetMetadata: created_datetime: Optional[str] = None version: int = 0 num_samples_per_shard: Optional[int] = None is_concatenated_manifest: bool = False dataset_config: Optional[ASRTarredDatasetConfig] = field(default_factory=lambda: ASRTarredDatasetConfig()) history: Optional[List[Any]] = field(default_factory=lambda: []) def __post_init__(self): self.created_datetime = self.get_current_datetime() def get_current_datetime(self): return datetime.now().strftime("%m-%d-%Y %H-%M-%S") @classmethod def from_config(cls, config: DictConfig): obj = cls() obj.__dict__.update(**config) return obj @classmethod def from_file(cls, filepath: str): config = OmegaConf.load(filepath) return ASRTarredDatasetMetadata.from_config(config=config) class ASRTarredDatasetBuilder: """ Helper class that constructs a tarred dataset from scratch, or concatenates tarred datasets together and constructs manifests for them. """ def __init__(self): self.config = None def configure(self, config: ASRTarredDatasetConfig): """ Sets the config generated from command line overrides. Args: config: ASRTarredDatasetConfig dataclass object. """ self.config = config # type: ASRTarredDatasetConfig if self.config.num_shards < 0: raise ValueError("`num_shards` must be > 0. Please fill in the metadata information correctly.") def create_new_dataset(self, manifest_path: str, target_dir: str = "./tarred/", num_workers: int = 0): """ Creates a new tarred dataset from a given manifest file. Args: manifest_path: Path to the original ASR manifest. target_dir: Output directory. num_workers: Integer denoting number of parallel worker processes which will write tarfiles. Defaults to 1 - which denotes sequential worker process. Output: Writes tarfiles, along with the tarred dataset compatible manifest file. Also preserves a record of the metadata used to construct this tarred dataset. """ if self.config is None: raise ValueError("Config has not been set. Please call `configure(config: ASRTarredDatasetConfig)`") if manifest_path is None: raise FileNotFoundError("Manifest filepath cannot be None !") config = self.config # type: ASRTarredDatasetConfig if not os.path.exists(target_dir): os.makedirs(target_dir) # Read the existing manifest entries, total_duration, filtered_entries, filtered_duration = self._read_manifest(manifest_path, config) if len(filtered_entries) > 0: print(f"Filtered {len(filtered_entries)} files which amounts to {filtered_duration} seconds of audio.") print( f"After filtering, manifest has {len(entries)} files which amounts to {total_duration} seconds of audio." ) if len(entries) == 0: print("No tarred dataset was created as there were 0 valid samples after filtering!") return if config.shuffle: random.seed(config.shuffle_seed) print("Shuffling...") if config.keep_files_together: filename_entries = defaultdict(list) for ent in entries: filename_entries[ent["audio_filepath"]].append(ent) filenames = list(filename_entries.keys()) random.shuffle(filenames) shuffled_entries = [] for filename in filenames: shuffled_entries += filename_entries[filename] entries = shuffled_entries else: random.shuffle(entries) # Create shards and updated manifest entries print(f"Number of samples added : {len(entries)}") print(f"Remainder: {len(entries) % config.num_shards}") start_indices = [] end_indices = [] # Build indices for i in range(config.num_shards): start_idx = (len(entries) // config.num_shards) * i end_idx = start_idx + (len(entries) // config.num_shards) print(f"Shard {i} has entries {start_idx} ~ {end_idx}") files = set() for ent_id in range(start_idx, end_idx): files.add(entries[ent_id]["audio_filepath"]) print(f"Shard {i} contains {len(files)} files") if i == config.num_shards - 1: # We discard in order to have the same number of entries per shard. print(f"Have {len(entries) - end_idx} entries left over that will be discarded.") start_indices.append(start_idx) end_indices.append(end_idx) manifest_folder, _ = os.path.split(manifest_path) with Parallel(n_jobs=num_workers, verbose=config.num_shards) as parallel: # Call parallel tarfile construction new_entries_list = parallel( delayed(self._create_shard)(entries[start_idx:end_idx], target_dir, i, manifest_folder) for i, (start_idx, end_idx) in enumerate(zip(start_indices, end_indices)) ) if config.shard_manifests: sharded_manifests_dir = target_dir + '/sharded_manifests' if not os.path.exists(sharded_manifests_dir): os.makedirs(sharded_manifests_dir) for manifest in new_entries_list: shard_id = manifest[0]['shard_id'] new_manifest_shard_path = os.path.join(sharded_manifests_dir, f'manifest_{shard_id}.json') with open(new_manifest_shard_path, 'w', encoding='utf-8') as m2: for entry in manifest: json.dump(entry, m2) m2.write('\n') # Flatten the list of list of entries to a list of entries new_entries = [sample for manifest in new_entries_list for sample in manifest] del new_entries_list print("Total number of entries in manifest :", len(new_entries)) # Write manifest new_manifest_path = os.path.join(target_dir, 'tarred_audio_manifest.json') with open(new_manifest_path, 'w', encoding='utf-8') as m2: for entry in new_entries: json.dump(entry, m2) m2.write('\n') # Write metadata (default metadata for new datasets) new_metadata_path = os.path.join(target_dir, 'metadata.yaml') metadata = ASRTarredDatasetMetadata() # Update metadata metadata.dataset_config = config metadata.num_samples_per_shard = len(new_entries) // config.num_shards # Write metadata metadata_yaml = OmegaConf.structured(metadata) OmegaConf.save(metadata_yaml, new_metadata_path, resolve=True) def create_concatenated_dataset( self, base_manifest_path: str, manifest_paths: List[str], metadata: ASRTarredDatasetMetadata, target_dir: str = "./tarred_concatenated/", num_workers: int = 1, ): """ Creates new tarfiles in order to create a concatenated dataset, whose manifest contains the data for both the original dataset as well as the new data submitted in manifest paths. Args: base_manifest_path: Path to the manifest file which contains the information for the original tarred dataset (with flattened paths). manifest_paths: List of one or more paths to manifest files that will be concatenated with above base tarred dataset. metadata: ASRTarredDatasetMetadata dataclass instance with overrides from command line. target_dir: Output directory Output: Writes tarfiles which with indices mapping to a "concatenated" tarred dataset, along with the tarred dataset compatible manifest file which includes information about all the datasets that comprise the concatenated dataset. Also preserves a record of the metadata used to construct this tarred dataset. """ if not os.path.exists(target_dir): os.makedirs(target_dir) if base_manifest_path is None: raise FileNotFoundError("Base manifest filepath cannot be None !") if manifest_paths is None or len(manifest_paths) == 0: raise FileNotFoundError("List of additional manifest filepaths cannot be None !") config = ASRTarredDatasetConfig(**(metadata.dataset_config)) # Read the existing manifest (no filtering here) base_entries, _, _, _ = self._read_manifest(base_manifest_path, config) print(f"Read base manifest containing {len(base_entries)} samples.") # Precompute number of samples per shard if metadata.num_samples_per_shard is None: num_samples_per_shard = len(base_entries) // config.num_shards else: num_samples_per_shard = metadata.num_samples_per_shard print("Number of samples per shard :", num_samples_per_shard) # Compute min and max duration and update config (if no metadata passed) print(f"Selected max duration : {config.max_duration}") print(f"Selected min duration : {config.min_duration}") entries = [] for new_manifest_idx in range(len(manifest_paths)): new_entries, total_duration, filtered_new_entries, filtered_duration = self._read_manifest( manifest_paths[new_manifest_idx], config ) if len(filtered_new_entries) > 0: print( f"Filtered {len(filtered_new_entries)} files which amounts to {filtered_duration:0.2f}" f" seconds of audio from manifest {manifest_paths[new_manifest_idx]}." ) print( f"After filtering, manifest has {len(entries)} files which amounts to {total_duration} seconds of audio." ) entries.extend(new_entries) if len(entries) == 0: print("No tarred dataset was created as there were 0 valid samples after filtering!") return if config.shuffle: random.seed(config.shuffle_seed) print("Shuffling...") random.shuffle(entries) # Drop last section of samples that cannot be added onto a chunk drop_count = len(entries) % num_samples_per_shard total_new_entries = len(entries) entries = entries[:-drop_count] print( f"Dropping {drop_count} samples from total new samples {total_new_entries} since they cannot " f"be added into a uniformly sized chunk." ) # Create shards and updated manifest entries num_added_shards = len(entries) // num_samples_per_shard print(f"Number of samples in base dataset : {len(base_entries)}") print(f"Number of samples in additional datasets : {len(entries)}") print(f"Number of added shards : {num_added_shards}") print(f"Remainder: {len(entries) % num_samples_per_shard}") start_indices = [] end_indices = [] shard_indices = [] for i in range(num_added_shards): start_idx = (len(entries) // num_added_shards) * i end_idx = start_idx + (len(entries) // num_added_shards) shard_idx = i + config.num_shards print(f"Shard {shard_idx} has entries {start_idx + len(base_entries)} ~ {end_idx + len(base_entries)}") start_indices.append(start_idx) end_indices.append(end_idx) shard_indices.append(shard_idx) manifest_folder, _ = os.path.split(base_manifest_path) with Parallel(n_jobs=num_workers, verbose=num_added_shards) as parallel: # Call parallel tarfile construction new_entries_list = parallel( delayed(self._create_shard)(entries[start_idx:end_idx], target_dir, shard_idx, manifest_folder) for i, (start_idx, end_idx, shard_idx) in enumerate(zip(start_indices, end_indices, shard_indices)) ) if config.shard_manifests: sharded_manifests_dir = target_dir + '/sharded_manifests' if not os.path.exists(sharded_manifests_dir): os.makedirs(sharded_manifests_dir) for manifest in new_entries_list: shard_id = manifest[0]['shard_id'] new_manifest_shard_path = os.path.join(sharded_manifests_dir, f'manifest_{shard_id}.json') with open(new_manifest_shard_path, 'w', encoding='utf-8') as m2: for entry in manifest: json.dump(entry, m2) m2.write('\n') # Flatten the list of list of entries to a list of entries new_entries = [sample for manifest in new_entries_list for sample in manifest] del new_entries_list # Write manifest if metadata is None: new_version = 1 # start with `1`, where `0` indicates the base manifest + dataset else: new_version = metadata.version + 1 print("Total number of entries in manifest :", len(base_entries) + len(new_entries)) new_manifest_path = os.path.join(target_dir, f'tarred_audio_manifest_version_{new_version}.json') with open(new_manifest_path, 'w', encoding='utf-8') as m2: # First write all the entries of base manifest for entry in base_entries: json.dump(entry, m2) m2.write('\n') # Finally write the new entries for entry in new_entries: json.dump(entry, m2) m2.write('\n') # Preserve historical metadata base_metadata = metadata # Write metadata (updated metadata for concatenated datasets) new_metadata_path = os.path.join(target_dir, f'metadata_version_{new_version}.yaml') metadata = ASRTarredDatasetMetadata() # Update config config.num_shards = config.num_shards + num_added_shards # Update metadata metadata.version = new_version metadata.dataset_config = config metadata.num_samples_per_shard = num_samples_per_shard metadata.is_concatenated_manifest = True metadata.created_datetime = metadata.get_current_datetime() # Attach history current_metadata = OmegaConf.structured(base_metadata.history) metadata.history = current_metadata # Write metadata metadata_yaml = OmegaConf.structured(metadata) OmegaConf.save(metadata_yaml, new_metadata_path, resolve=True) def _read_manifest(self, manifest_path: str, config: ASRTarredDatasetConfig): """Read and filters data from the manifest""" # Read the existing manifest entries = [] total_duration = 0.0 filtered_entries = [] filtered_duration = 0.0 with open(manifest_path, 'r', encoding='utf-8') as m: for line in m: entry = json.loads(line) if (config.max_duration is None or entry['duration'] < config.max_duration) and ( config.min_duration is None or entry['duration'] >= config.min_duration ): entries.append(entry) total_duration += entry["duration"] else: filtered_entries.append(entry) filtered_duration += entry['duration'] return entries, total_duration, filtered_entries, filtered_duration def _create_shard(self, entries, target_dir, shard_id, manifest_folder): """Creates a tarball containing the audio files from `entries`. """ if self.config.sort_in_shards: entries.sort(key=lambda x: x["duration"], reverse=False) new_entries = [] tar = tarfile.open(os.path.join(target_dir, f'audio_{shard_id}.tar'), mode='w', dereference=True) count = dict() for entry in entries: # We squash the filename since we do not preserve directory structure of audio files in the tarball. if os.path.exists(entry["audio_filepath"]): audio_filepath = entry["audio_filepath"] else: audio_filepath = os.path.join(manifest_folder, entry["audio_filepath"]) if not os.path.exists(audio_filepath): raise FileNotFoundError(f"Could not find {entry['audio_filepath']}!") base, ext = os.path.splitext(audio_filepath) base = base.replace('/', '_') # Need the following replacement as long as WebDataset splits on first period base = base.replace('.', '_') squashed_filename = f'{base}{ext}' if squashed_filename not in count: tar.add(audio_filepath, arcname=squashed_filename) to_write = squashed_filename count[squashed_filename] = 1 else: to_write = base + "-sub" + str(count[squashed_filename]) + ext count[squashed_filename] += 1 new_entry = { 'audio_filepath': to_write, 'duration': entry['duration'], 'shard_id': shard_id, # Keep shard ID for recordkeeping } if 'label' in entry: new_entry['label'] = entry['label'] if 'text' in entry: new_entry['text'] = entry['text'] if 'offset' in entry: new_entry['offset'] = entry['offset'] if 'lang' in entry: new_entry['lang'] = entry['lang'] new_entries.append(new_entry) tar.close() return new_entries @classmethod def setup_history(cls, base_metadata: ASRTarredDatasetMetadata, history: List[Any]): if 'history' in base_metadata.keys(): for history_val in base_metadata.history: cls.setup_history(history_val, history) if base_metadata is not None: metadata_copy = copy.deepcopy(base_metadata) with open_dict(metadata_copy): metadata_copy.pop('history', None) history.append(metadata_copy) def main(): if args.buckets_num > 1: bucket_length = (args.max_duration - args.min_duration) / float(args.buckets_num) for i in range(args.buckets_num): min_duration = args.min_duration + i * bucket_length max_duration = min_duration + bucket_length if i == args.buckets_num - 1: # add a small number to cover the samples with exactly duration of max_duration in the last bucket. max_duration += 1e-5 target_dir = os.path.join(args.target_dir, f"bucket{i+1}") print(f"Creating bucket {i+1} with min_duration={min_duration} and max_duration={max_duration} ...") print(f"Results are being saved at: {target_dir}.") create_tar_datasets(min_duration=min_duration, max_duration=max_duration, target_dir=target_dir) print(f"Bucket {i+1} is created.") else: create_tar_datasets(min_duration=args.min_duration, max_duration=args.max_duration, target_dir=args.target_dir) def create_tar_datasets(min_duration: float, max_duration: float, target_dir: str): builder = ASRTarredDatasetBuilder() shard_manifests = False if args.no_shard_manifests else True if args.write_metadata: metadata = ASRTarredDatasetMetadata() dataset_cfg = ASRTarredDatasetConfig( num_shards=args.num_shards, shuffle=args.shuffle, max_duration=max_duration, min_duration=min_duration, shuffle_seed=args.shuffle_seed, sort_in_shards=args.sort_in_shards, shard_manifests=shard_manifests, keep_files_together=args.keep_files_together, ) metadata.dataset_config = dataset_cfg output_path = os.path.join(target_dir, 'default_metadata.yaml') OmegaConf.save(metadata, output_path, resolve=True) print(f"Default metadata written to {output_path}") exit(0) if args.concat_manifest_paths is None or len(args.concat_manifest_paths) == 0: print("Creating new tarred dataset ...") # Create a tarred dataset from scratch config = ASRTarredDatasetConfig( num_shards=args.num_shards, shuffle=args.shuffle, max_duration=max_duration, min_duration=min_duration, shuffle_seed=args.shuffle_seed, sort_in_shards=args.sort_in_shards, shard_manifests=shard_manifests, keep_files_together=args.keep_files_together, ) builder.configure(config) builder.create_new_dataset(manifest_path=args.manifest_path, target_dir=target_dir, num_workers=args.workers) else: if args.buckets_num > 1: raise ValueError("Concatenation feature does not support buckets_num > 1.") print("Concatenating multiple tarred datasets ...") # Implicitly update config from base details if args.metadata_path is not None: metadata = ASRTarredDatasetMetadata.from_file(args.metadata_path) else: raise ValueError("`metadata` yaml file path must be provided!") # Preserve history history = [] builder.setup_history(OmegaConf.structured(metadata), history) metadata.history = history # Add command line overrides (everything other than num_shards) metadata.dataset_config.max_duration = max_duration metadata.dataset_config.min_duration = min_duration metadata.dataset_config.shuffle = args.shuffle metadata.dataset_config.shuffle_seed = args.shuffle_seed metadata.dataset_config.sort_in_shards = args.sort_in_shards metadata.dataset_config.shard_manifests = shard_manifests builder.configure(metadata.dataset_config) # Concatenate a tarred dataset onto a previous one builder.create_concatenated_dataset( base_manifest_path=args.manifest_path, manifest_paths=args.concat_manifest_paths, metadata=metadata, target_dir=target_dir, num_workers=args.workers, ) if DALI_INDEX_SCRIPT_AVAILABLE and dali_index.INDEX_CREATOR_AVAILABLE: print("Constructing DALI Tarfile Index - ", target_dir) index_config = dali_index.DALITarredIndexConfig(tar_dir=target_dir, workers=args.workers) dali_index.main(index_config) if __name__ == "__main__": main()