--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.84 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5771 - Accuracy: 0.84 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 10 - total_train_batch_size: 20 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1148 | 0.11 | 5 | 0.5865 | 0.83 | | 0.1411 | 0.22 | 10 | 0.5951 | 0.83 | | 0.1014 | 0.33 | 15 | 0.5964 | 0.83 | | 0.085 | 0.44 | 20 | 0.5901 | 0.83 | | 0.1362 | 0.56 | 25 | 0.5894 | 0.82 | | 0.0917 | 0.67 | 30 | 0.5862 | 0.83 | | 0.097 | 0.78 | 35 | 0.5759 | 0.84 | | 0.1206 | 0.89 | 40 | 0.5701 | 0.84 | | 0.0909 | 1.0 | 45 | 0.5649 | 0.84 | | 0.1269 | 1.11 | 50 | 0.5674 | 0.84 | | 0.1117 | 1.22 | 55 | 0.5714 | 0.84 | | 0.0791 | 1.33 | 60 | 0.5730 | 0.86 | | 0.1016 | 1.44 | 65 | 0.5745 | 0.84 | | 0.0712 | 1.56 | 70 | 0.5744 | 0.85 | | 0.1212 | 1.67 | 75 | 0.5773 | 0.85 | | 0.0724 | 1.78 | 80 | 0.5782 | 0.85 | | 0.0831 | 1.89 | 85 | 0.5777 | 0.85 | | 0.1429 | 2.0 | 90 | 0.5771 | 0.84 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1