--- language: - en tags: - geov --- Prompt Format: ``` [instruction] [optional input] [response will start after two newlines] ``` ```python !pip install -q bitsandbytes datasets accelerate loralib !pip install -q git+https://github.com/huggingface/transformers.git@main git+https://github.com/huggingface/peft.git !pip install -q geov import torch from peft import PeftModel, PeftConfig from geov import GeoVForCausalLM, GeoVTokenizer model = GeoVForCausalLM.from_pretrained( "GeoV/GeoV-9b", load_in_8bit=True, low_cpu_mem_usage=True, device_map='auto', ) tokenizer = GeoVTokenizer.from_pretrained("GeoV/GeoV-9b") peft_model_id = "crumb/GeoV-Instruct-LoRA" model = PeftModel.from_pretrained(model, peft_model_id) # Inference prompt = ''' Describe the structure of an atom. ''' batch = tokenizer(prompt, return_tensors='pt') with torch.cuda.amp.autocast(): output_tokens = model.generate(**batch, max_new_tokens=50) print(tokenizer.decode(output_tokens[0], skip_special_tokens=True)) ```