--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer datasets: - biobert_json metrics: - precision - recall - f1 - accuracy model-index: - name: NER-finetuning-BBU-CM-V1 results: - task: name: Token Classification type: token-classification dataset: name: biobert_json type: biobert_json config: Biobert_json split: validation args: Biobert_json metrics: - name: Precision type: precision value: 0.9299403078856425 - name: Recall type: recall value: 0.9512587038028923 - name: F1 type: f1 value: 0.9404787121372591 - name: Accuracy type: accuracy value: 0.9771331458040319 --- # NER-finetuning-BBU-CM-V1 This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the biobert_json dataset. It achieves the following results on the evaluation set: - Loss: 0.1111 - Precision: 0.9299 - Recall: 0.9513 - F1: 0.9405 - Accuracy: 0.9771 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4331 | 1.0 | 612 | 0.1091 | 0.8914 | 0.9413 | 0.9156 | 0.9713 | | 0.1313 | 2.0 | 1224 | 0.1077 | 0.8941 | 0.9494 | 0.9209 | 0.9718 | | 0.0869 | 3.0 | 1836 | 0.0888 | 0.9308 | 0.9555 | 0.9430 | 0.9786 | | 0.0726 | 4.0 | 2448 | 0.0957 | 0.9253 | 0.9578 | 0.9413 | 0.9767 | | 0.0507 | 5.0 | 3060 | 0.0936 | 0.9287 | 0.9554 | 0.9419 | 0.9770 | | 0.0451 | 6.0 | 3672 | 0.1051 | 0.9276 | 0.9538 | 0.9405 | 0.9762 | | 0.0383 | 7.0 | 4284 | 0.1038 | 0.9218 | 0.9576 | 0.9394 | 0.9760 | | 0.036 | 8.0 | 4896 | 0.1094 | 0.9245 | 0.9533 | 0.9387 | 0.9765 | | 0.0284 | 9.0 | 5508 | 0.1082 | 0.9296 | 0.9516 | 0.9404 | 0.9768 | | 0.0256 | 10.0 | 6120 | 0.1111 | 0.9299 | 0.9513 | 0.9405 | 0.9771 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3