from typing import Tuple import torch import torch.nn.functional as F from PIL import Image from PIL.Image import Image as PilImage from torchvision import transforms from torchvision.transforms.functional import normalize from transformers.image_processing_utils import BaseImageProcessor, BatchFeature from transformers.image_utils import ImageInput def apply_transform(data): transform = transforms.ToTensor() return transform(data) class ISNetImageProcessor(BaseImageProcessor): def __init__(self, model_in_size: Tuple[int, int] = (1024, 1024), **kwargs) -> None: super().__init__(**kwargs) self.model_in_size = model_in_size def preprocess(self, images: ImageInput, **kwargs) -> BatchFeature: if not isinstance(images, PilImage): raise ValueError(f"Expected PIL Image, got {type(images)}") image_pil = images image_tensor = apply_transform(image_pil) # shape: (3, h, w) -> (1, 3, h, w) image_tensor = image_tensor.unsqueeze(dim=0) image_tensor = F.interpolate( image_tensor, size=self.model_in_size, mode="bilinear", align_corners=False ) image_tensor = normalize( image_tensor, mean=[0.5, 0.5, 0.5], std=[1.0, 1.0, 1.0] ) return BatchFeature(data={"pixel_values": image_tensor}, tensor_type="pt") def postprocess( self, prediction: torch.Tensor, width: int, height: int, **kwargs ) -> PilImage: def _norm_prediction(d: torch.Tensor) -> torch.Tensor: ma, mi = torch.max(d), torch.min(d) # division while avoiding zero division dn = (d - mi) / ((ma - mi) + torch.finfo(torch.float32).eps) return dn prediction = _norm_prediction(prediction) prediction = prediction.squeeze() prediction = prediction * 255 + 0.5 prediction = prediction.clamp(0, 255) prediction_np = prediction.cpu().numpy() image = Image.fromarray(prediction_np).convert("RGB") image = image.resize((width, height), resample=Image.Resampling.BILINEAR) return image