import numpy as np from math import ceil def decode_cfa_pattern(cfa_pattern): cfa_dict = {0: 'B', 1: 'G', 2: 'R'} return "".join([cfa_dict[x] for x in cfa_pattern]) def outOfGamutClipping(I, range=1.): """ Clips out-of-gamut pixels. """ if range == 1.: I[I > 1] = 1 # any pixel is higher than 1, clip it to 1 I[I < 0] = 0 # any pixel is below 0, clip it to 0 else: I[I > 255] = 255 # any pixel is higher than 255, clip it to 255 I[I < 0] = 0 # any pixel is below 0, clip it to 0 return I def ratios2floats(ratios): floats = [] for ratio in ratios: floats.append(float(ratio.num) / ratio.den) return floats def fractions2floats(fractions): floats = [] for fraction in fractions: floats.append(float(fraction.numerator) / fraction.denominator) return floats def gaussian(kernel_size, sigma): # calculate which number to where the grid should be # remember that, kernel_size[0] is the width of the kernel # and kernel_size[1] is the height of the kernel temp = np.floor(np.float32(kernel_size) / 2.) # create the grid # example: if kernel_size = [5, 3], then: # x: array([[-2., -1., 0., 1., 2.], # [-2., -1., 0., 1., 2.], # [-2., -1., 0., 1., 2.]]) # y: array([[-1., -1., -1., -1., -1.], # [ 0., 0., 0., 0., 0.], # [ 1., 1., 1., 1., 1.]]) x, y = np.meshgrid(np.linspace(-temp[0], temp[0], kernel_size[0]), np.linspace(-temp[1], temp[1], kernel_size[1])) # Gaussian equation temp = np.exp(-(x ** 2 + y ** 2) / (2. * sigma ** 2)) # make kernel sum equal to 1 return temp / np.sum(temp) def aspect_ratio_imresize(im, max_output=256): h, w, c = im.shape if max(h, w) > max_output: ratio = max_output / max(h, w) im = imresize.imresize(im, scalar_scale=ratio) h, w, c = im.shape if w % (2 ** 4) == 0: new_size_w = w else: new_size_w = w + (2 ** 4) - w % (2 ** 4) if h % (2 ** 4) == 0: new_size_h = h else: new_size_h = h + (2 ** 4) - h % (2 ** 4) new_size = (new_size_h, new_size_w) if not ((h, w) == new_size): im = imresize.imresize(im, output_shape=new_size) return im def cubic(x): x = np.array(x).astype(np.float64) absx = np.absolute(x) absx2 = np.multiply(absx, absx) absx3 = np.multiply(absx2, absx) f = np.multiply(1.5*absx3 - 2.5*absx2 + 1, absx <= 1) + np.multiply(-0.5*absx3 + 2.5*absx2 - 4*absx + 2, (1 < absx) & (absx <= 2)) return f def triangle(x): x = np.array(x).astype(np.float64) lessthanzero = np.logical_and((x>=-1),x<0) greaterthanzero = np.logical_and((x<=1),x>=0) f = np.multiply((x+1),lessthanzero) + np.multiply((1-x),greaterthanzero) return f def deriveSizeFromScale(img_shape, scale): output_shape = [] for k in range(2): output_shape.append(int(ceil(scale[k] * img_shape[k]))) return output_shape def deriveScaleFromSize(img_shape_in, img_shape_out): scale = [] for k in range(2): scale.append(1.0 * img_shape_out[k] / img_shape_in[k]) return scale def contributions(in_length, out_length, scale, kernel, k_width): if scale < 1: h = lambda x: scale * kernel(scale * x) kernel_width = 1.0 * k_width / scale else: h = kernel kernel_width = k_width x = np.arange(1, out_length+1).astype(np.float64) u = x / scale + 0.5 * (1 - 1 / scale) left = np.floor(u - kernel_width / 2) P = int(ceil(kernel_width)) + 2 ind = np.expand_dims(left, axis=1) + np.arange(P) - 1 # -1 because indexing from 0 indices = ind.astype(np.int32) weights = h(np.expand_dims(u, axis=1) - indices - 1) # -1 because indexing from 0 weights = np.divide(weights, np.expand_dims(np.sum(weights, axis=1), axis=1)) aux = np.concatenate((np.arange(in_length), np.arange(in_length - 1, -1, step=-1))).astype(np.int32) indices = aux[np.mod(indices, aux.size)] ind2store = np.nonzero(np.any(weights, axis=0)) weights = weights[:, ind2store] indices = indices[:, ind2store] return weights, indices def imresizemex(inimg, weights, indices, dim): in_shape = inimg.shape w_shape = weights.shape out_shape = list(in_shape) out_shape[dim] = w_shape[0] outimg = np.zeros(out_shape) if dim == 0: for i_img in range(in_shape[1]): for i_w in range(w_shape[0]): w = weights[i_w, :] ind = indices[i_w, :] im_slice = inimg[ind, i_img].astype(np.float64) outimg[i_w, i_img] = np.sum(np.multiply(np.squeeze(im_slice, axis=0), w.T), axis=0) elif dim == 1: for i_img in range(in_shape[0]): for i_w in range(w_shape[0]): w = weights[i_w, :] ind = indices[i_w, :] im_slice = inimg[i_img, ind].astype(np.float64) outimg[i_img, i_w] = np.sum(np.multiply(np.squeeze(im_slice, axis=0), w.T), axis=0) if inimg.dtype == np.uint8: outimg = np.clip(outimg, 0, 255) return np.around(outimg).astype(np.uint8) else: return outimg def imresizevec(inimg, weights, indices, dim): wshape = weights.shape if dim == 0: weights = weights.reshape((wshape[0], wshape[2], 1, 1)) outimg = np.sum(weights*((inimg[indices].squeeze(axis=1)).astype(np.float64)), axis=1) elif dim == 1: weights = weights.reshape((1, wshape[0], wshape[2], 1)) outimg = np.sum(weights*((inimg[:, indices].squeeze(axis=2)).astype(np.float64)), axis=2) if inimg.dtype == np.uint8: outimg = np.clip(outimg, 0, 255) return np.around(outimg).astype(np.uint8) else: return outimg def resizeAlongDim(A, dim, weights, indices, mode="vec"): if mode == "org": out = imresizemex(A, weights, indices, dim) else: out = imresizevec(A, weights, indices, dim) return out def imresize(I, scalar_scale=None, method='bicubic', output_shape=None, mode="vec"): if method == 'bicubic': kernel = cubic elif method == 'bilinear': kernel = triangle else: print ('Error: Unidentified method supplied') kernel_width = 4.0 # Fill scale and output_size if scalar_scale is not None: scalar_scale = float(scalar_scale) scale = [scalar_scale, scalar_scale] output_size = deriveSizeFromScale(I.shape, scale) elif output_shape is not None: scale = deriveScaleFromSize(I.shape, output_shape) output_size = list(output_shape) else: print ('Error: scalar_scale OR output_shape should be defined!') return scale_np = np.array(scale) order = np.argsort(scale_np) weights = [] indices = [] for k in range(2): w, ind = contributions(I.shape[k], output_size[k], scale[k], kernel, kernel_width) weights.append(w) indices.append(ind) B = np.copy(I) flag2D = False if B.ndim == 2: B = np.expand_dims(B, axis=2) flag2D = True for k in range(2): dim = order[k] B = resizeAlongDim(B, dim, weights[dim], indices[dim], mode) if flag2D: B = np.squeeze(B, axis=2) return B