--- library_name: transformers license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned_gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: gtzan type: gtzan config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.75 --- # distilhubert-finetuned_gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the gtzan dataset. It achieves the following results on the evaluation set: - Loss: 0.8025 - Accuracy: 0.75 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.7782 | 1.0 | 113 | 1.7870 | 0.49 | | 1.2942 | 2.0 | 226 | 1.3317 | 0.62 | | 1.0869 | 3.0 | 339 | 1.0283 | 0.73 | | 0.5358 | 4.0 | 452 | 0.9647 | 0.72 | | 0.6048 | 5.0 | 565 | 0.7985 | 0.76 | | 0.4135 | 6.0 | 678 | 0.8013 | 0.75 | | 0.3721 | 7.0 | 791 | 0.8025 | 0.75 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1 - Datasets 2.19.1 - Tokenizers 0.21.0