import argparse import re import torch import safetensors.torch def convert_mm_name_to_compvis(key): sd_module_key, _, network_part = re.split(r'(_lora\.)', key) sd_module_key = sd_module_key.replace("processor.", "").replace("to_out", "to_out.0") sd_module_key = sd_module_key.replace(".", "_") return f'{sd_module_key}.lora_{network_part}' def convert_from_diffuser_state_dict(ad_cn_l): unet_conversion_map = [ # (stable-diffusion, HF Diffusers) ("time_embed.0.weight", "time_embedding.linear_1.weight"), ("time_embed.0.bias", "time_embedding.linear_1.bias"), ("time_embed.2.weight", "time_embedding.linear_2.weight"), ("time_embed.2.bias", "time_embedding.linear_2.bias"), ("label_emb.0.0.weight", "add_embedding.linear_1.weight"), ("label_emb.0.0.bias", "add_embedding.linear_1.bias"), ("label_emb.0.2.weight", "add_embedding.linear_2.weight"), ("label_emb.0.2.bias", "add_embedding.linear_2.bias"), ("input_blocks.0.0.weight", "conv_in.weight"), ("input_blocks.0.0.bias", "conv_in.bias"), ("middle_block_out.0.weight", "controlnet_mid_block.weight"), ("middle_block_out.0.bias", "controlnet_mid_block.bias"), ] unet_conversion_map_resnet = [ # (stable-diffusion, HF Diffusers) ("in_layers.0", "norm1"), ("in_layers.2", "conv1"), ("out_layers.0", "norm2"), ("out_layers.3", "conv2"), ("emb_layers.1", "time_emb_proj"), ("skip_connection", "conv_shortcut"), ] unet_conversion_map_layer = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(10): # loop over resnets/attentions for downblocks hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}." sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0." unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}." sd_down_atn_prefix = f"input_blocks.{3 * i + j + 1}.1." unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv." sd_downsample_prefix = f"input_blocks.{3 * (i + 1)}.0.op." unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) hf_mid_atn_prefix = "mid_block.attentions.0." sd_mid_atn_prefix = "middle_block.1." unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): hf_mid_res_prefix = f"mid_block.resnets.{j}." sd_mid_res_prefix = f"middle_block.{2*j}." unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) # controlnet specific controlnet_cond_embedding_names = ['conv_in'] + [f'blocks.{i}' for i in range(6)] + ['conv_out'] for i, hf_prefix in enumerate(controlnet_cond_embedding_names): hf_prefix = f"controlnet_cond_embedding.{hf_prefix}." sd_prefix = f"input_hint_block.{i*2}." unet_conversion_map_layer.append((sd_prefix, hf_prefix)) for i in range(12): hf_prefix = f"controlnet_down_blocks.{i}." sd_prefix = f"zero_convs.{i}.0." unet_conversion_map_layer.append((sd_prefix, hf_prefix)) def _convert_from_diffuser_state_dict(unet_state_dict): mapping = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: mapping[hf_name] = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: v = v.replace(hf_part, sd_part) mapping[k] = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: v = v.replace(hf_part, sd_part) mapping[k] = v new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items() if k in unet_state_dict} return new_state_dict return _convert_from_diffuser_state_dict(ad_cn_l) def lora_conversion(file_path, save_path): state_dict = safetensors.torch.load_file(file_path) if file_path.endswith(".safetensors") else torch.load(file_path) modified_dict = {convert_mm_name_to_compvis(k): v for k, v in state_dict.items()} safetensors.torch.save_file(modified_dict, save_path) print(f"LoRA conversion completed: {save_path}") def controlnet_conversion(ad_cn_old, ad_cn_new, normal_cn_path): ad_cn = safetensors.torch.load_file(ad_cn_old) if ad_cn_old.endswith(".safetensors") else torch.load(ad_cn_old) normal_cn = safetensors.torch.load_file(normal_cn_path) ad_cn_l, ad_cn_m = {}, {} for k in ad_cn.keys(): if k.startswith("controlnet_cond_embedding"): new_key = k.replace("controlnet_cond_embedding.", "input_hint_block.0.") ad_cn_m[new_key] = ad_cn[k].to(torch.float16) elif not k in normal_cn: if "motion_modules" in k: ad_cn_m[k] = ad_cn[k].to(torch.float16) else: raise Exception(f"{k} not in normal_cn") else: ad_cn_l[k] = ad_cn[k].to(torch.float16) ad_cn_l = convert_from_diffuser_state_dict(ad_cn_l) ad_cn_l.update(ad_cn_m) safetensors.torch.save_file(ad_cn_l, ad_cn_new) print(f"ControlNet conversion completed: {ad_cn_new}") def main(): parser = argparse.ArgumentParser(description="Script to convert LoRA and ControlNet models.") subparsers = parser.add_subparsers(dest='command') # LoRA conversion parser lora_parser = subparsers.add_parser('lora', help='LoRA conversion') lora_parser.add_argument('file_path', type=str, help='Path to the old LoRA checkpoint') lora_parser.add_argument('save_path', type=str, help='Path to save the new LoRA checkpoint') # ControlNet conversion parser cn_parser = subparsers.add_parser('controlnet', help='ControlNet conversion') cn_parser.add_argument('ad_cn_old', type=str, help='Path to the old sparse ControlNet checkpoint') cn_parser.add_argument('ad_cn_new', type=str, help='Path to save the new sparse ControlNet checkpoint') cn_parser.add_argument('normal_cn_path', type=str, help='Path to the normal ControlNet model') args = parser.parse_args() if args.command == 'lora': lora_conversion(args.file_path, args.save_path) elif args.command == 'controlnet': controlnet_conversion(args.ad_cn_old, args.ad_cn_new, args.normal_cn_path) else: parser.print_help() if __name__ == "__main__": main()