commanderstrife's picture
update model card README.md
a436780
|
raw
history blame
2.88 kB
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - bc2gm_corpus
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bc2gm_corpus-Bio_ClinicalBERT-finetuned-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: bc2gm_corpus
          type: bc2gm_corpus
          args: bc2gm_corpus
        metrics:
          - name: Precision
            type: precision
            value: 0.7853881278538812
          - name: Recall
            type: recall
            value: 0.8158102766798419
          - name: F1
            type: f1
            value: 0.8003101977510663
          - name: Accuracy
            type: accuracy
            value: 0.9758965601366187

bc2gm_corpus-Bio_ClinicalBERT-finetuned-ner

This model is a fine-tuned version of emilyalsentzer/Bio_ClinicalBERT on the bc2gm_corpus dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1505
  • Precision: 0.7854
  • Recall: 0.8158
  • F1: 0.8003
  • Accuracy: 0.9759

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0981 1.0 782 0.0712 0.7228 0.7948 0.7571 0.9724
0.0509 2.0 1564 0.0687 0.7472 0.8199 0.7818 0.9746
0.0121 3.0 2346 0.0740 0.7725 0.8011 0.7866 0.9747
0.0001 4.0 3128 0.1009 0.7618 0.8251 0.7922 0.9741
0.0042 5.0 3910 0.1106 0.7757 0.8185 0.7965 0.9754
0.0015 6.0 4692 0.1182 0.7812 0.8111 0.7958 0.9758
0.0001 7.0 5474 0.1283 0.7693 0.8275 0.7973 0.9753
0.0072 8.0 6256 0.1376 0.7863 0.8158 0.8008 0.9762
0.0045 9.0 7038 0.1468 0.7856 0.8180 0.8015 0.9761
0.0 10.0 7820 0.1505 0.7854 0.8158 0.8003 0.9759

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.12.0+cu113
  • Datasets 2.3.2
  • Tokenizers 0.12.1