cointegrated's picture
Update README.md
a762532
metadata
language: ru
pipeline_tag: zero-shot-classification
tags:
  - rubert
  - russian
  - nli
  - rte
  - zero-shot-classification
widget:
  - text: Я хочу поехать в Австралию
    candidate_labels: спорт,путешествия,музыка,кино,книги,наука,политика
    hypothesis_template: Тема текста - {}.
datasets:
  - cointegrated/nli-rus-translated-v2021

RuBERT for NLI (natural language inference)

This is the DeepPavlov/rubert-base-cased fine-tuned to predict the logical relationship between two short texts: entailment, contradiction, or neutral.

Usage

How to run the model for NLI:

# !pip install transformers sentencepiece --quiet
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification

model_checkpoint = 'cointegrated/rubert-base-cased-nli-threeway'
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint)
if torch.cuda.is_available():
    model.cuda()

text1 = 'Сократ - человек, а все люди смертны.'
text2 = 'Сократ никогда не умрёт.'
with torch.inference_mode():
    out = model(**tokenizer(text1, text2, return_tensors='pt').to(model.device))
    proba = torch.softmax(out.logits, -1).cpu().numpy()[0]
print({v: proba[k] for k, v in model.config.id2label.items()})
# {'entailment': 0.009525929, 'contradiction': 0.9332064, 'neutral': 0.05726764} 

You can also use this model for zero-shot short text classification (by labels only), e.g. for sentiment analysis:

def predict_zero_shot(text, label_texts, model, tokenizer, label='entailment', normalize=True):
    label_texts
    tokens = tokenizer([text] * len(label_texts), label_texts, truncation=True, return_tensors='pt', padding=True)
    with torch.inference_mode():
        result = torch.softmax(model(**tokens.to(model.device)).logits, -1)
    proba = result[:, model.config.label2id[label]].cpu().numpy()
    if normalize:
        proba /= sum(proba)
    return proba

classes = ['Я доволен', 'Я недоволен']
predict_zero_shot('Какая гадость эта ваша заливная рыба!', classes, model, tokenizer)
# array([0.05609814, 0.9439019 ], dtype=float32)
predict_zero_shot('Какая вкусная эта ваша заливная рыба!', classes, model, tokenizer)
# array([0.9059292 , 0.09407079], dtype=float32)

Alternatively, you can use Huggingface pipelines for inference.

Sources

The model has been trained on a series of NLI datasets automatically translated to Russian from English.

Most datasets were taken from the repo of Felipe Salvatore: JOCI, MNLI, MPE, SICK, SNLI.

Some datasets obtained from the original sources: ANLI, NLI-style FEVER, IMPPRES.

Performance

The table below shows ROC AUC (one class vs rest) for five models on the corresponding dev sets:

  • tiny: a small BERT predicting entailment vs not_entailment
  • twoway: a base-sized BERT predicting entailment vs not_entailment
  • threeway (this model): a base-sized BERT predicting entailment vs contradiction vs neutral
  • vicgalle-xlm: a large multilingual NLI model
  • facebook-bart: a large multilingual NLI model
model add_one_rte anli_r1 anli_r2 anli_r3 copa fever help iie imppres joci mnli monli mpe scitail sick snli terra total
n_observations 387 1000 1000 1200 200 20474 3355 31232 7661 939 19647 269 1000 2126 500 9831 307 101128
tiny/entailment 0.77 0.59 0.52 0.53 0.53 0.90 0.81 0.78 0.93 0.81 0.82 0.91 0.81 0.78 0.93 0.95 0.67 0.77
twoway/entailment 0.89 0.73 0.61 0.62 0.58 0.96 0.92 0.87 0.99 0.90 0.90 0.99 0.91 0.96 0.97 0.97 0.87 0.86
threeway/entailment 0.91 0.75 0.61 0.61 0.57 0.96 0.56 0.61 0.99 0.90 0.91 0.67 0.92 0.84 0.98 0.98 0.90 0.80
vicgalle-xlm/entailment 0.88 0.79 0.63 0.66 0.57 0.93 0.56 0.62 0.77 0.80 0.90 0.70 0.83 0.84 0.91 0.93 0.93 0.78
facebook-bart/entailment 0.51 0.41 0.43 0.47 0.50 0.74 0.55 0.57 0.60 0.63 0.70 0.52 0.56 0.68 0.67 0.72 0.64 0.58
threeway/contradiction 0.71 0.64 0.61 0.97 1.00 0.77 0.92 0.89 0.99 0.98 0.85
threeway/neutral 0.79 0.70 0.62 0.91 0.99 0.68 0.86 0.79 0.96 0.96 0.83

For evaluation (and for training of the tiny and twoway models), some extra datasets were used: Add-one RTE, CoPA, IIE, and SCITAIL taken from the repo of Felipe Salvatore and translatted, HELP and MoNLI taken from the original sources and translated, and Russian TERRa.