--- license: cc-by-nc-3.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall base_model: QCRI/bert-base-multilingual-cased-pos-english model-index: - name: finetuning-sentiment-model-bert-multilingual results: [] --- # finetuning-sentiment-model-bert-multilingual This model is a fine-tuned version of [QCRI/bert-base-multilingual-cased-pos-english](https://huggingface.co/QCRI/bert-base-multilingual-cased-pos-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9412 - Accuracy: 0.6624 - F1: 0.6624 - Precision: 0.6624 - Recall: 0.6624 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2