codechrl commited on
Commit
09a777a
·
verified ·
1 Parent(s): f7c34c1

Training update: 163,187/164,092 rows (99.45%) | +4 new @ 2025-11-13 00:58:56

Browse files
Files changed (4) hide show
  1. README.md +4 -4
  2. model.safetensors +1 -1
  3. training_args.bin +1 -1
  4. training_metadata.json +6 -6
README.md CHANGED
@@ -25,7 +25,7 @@ pipeline_tag: fill-mask
25
  - Model type: fine-tuned lightweight BERT variant
26
  - Languages: English & Indonesia
27
  - Finetuned from: `boltuix/bert-micro`
28
- - Status: **Early version** — trained on **99.44%** of planned data.
29
 
30
  **Model sources**
31
  - Base model: [boltuix/bert-micro](https://huggingface.co/boltuix/bert-micro)
@@ -51,7 +51,7 @@ You can use this model to classify cybersecurity-related text — for example, w
51
  - Early classification of SIEM alert & events.
52
 
53
  ## 3. Bias, Risks, and Limitations
54
- Because the model is based on a small subset (99.44%) of planned data, performance is preliminary and may degrade on unseen or specialized domains (industrial control, IoT logs, foreign language).
55
  - Inherits any biases present in the base model (`boltuix/bert-micro`) and in the fine-tuning data — e.g., over-representation of certain threat types, vendor or tooling-specific vocabulary.
56
  - **Should not be used as sole authority for incident decisions; only as an aid to human analysts.**
57
 
@@ -76,8 +76,8 @@ Since cybersecurity data often contains lengthy alert descriptions and execution
76
 
77
  ### Training Data
78
  - **Total database rows**: 164,092
79
- - **Rows processed (cumulative)**: 163,177 (99.44%)
80
- - **Training date**: 2025-11-13 00:19:27
81
 
82
  ### Post-Training Metrics
83
  - **Final training loss**:
 
25
  - Model type: fine-tuned lightweight BERT variant
26
  - Languages: English & Indonesia
27
  - Finetuned from: `boltuix/bert-micro`
28
+ - Status: **Early version** — trained on **99.45%** of planned data.
29
 
30
  **Model sources**
31
  - Base model: [boltuix/bert-micro](https://huggingface.co/boltuix/bert-micro)
 
51
  - Early classification of SIEM alert & events.
52
 
53
  ## 3. Bias, Risks, and Limitations
54
+ Because the model is based on a small subset (99.45%) of planned data, performance is preliminary and may degrade on unseen or specialized domains (industrial control, IoT logs, foreign language).
55
  - Inherits any biases present in the base model (`boltuix/bert-micro`) and in the fine-tuning data — e.g., over-representation of certain threat types, vendor or tooling-specific vocabulary.
56
  - **Should not be used as sole authority for incident decisions; only as an aid to human analysts.**
57
 
 
76
 
77
  ### Training Data
78
  - **Total database rows**: 164,092
79
+ - **Rows processed (cumulative)**: 163,187 (99.45%)
80
+ - **Training date**: 2025-11-13 00:58:56
81
 
82
  ### Post-Training Metrics
83
  - **Final training loss**:
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f762bdecc2dd30278e8469b7f7e7e17eb111b5901160eece91f519c9bdf14e00
3
  size 17671560
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e77dcdec017d224fde926f807dcaba6c472853f4f3854d875a4400c1f4f8dc7f
3
  size 17671560
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bb049879030601c4aa1033181232022c1b1af6b6aac932f6a06816f259e9d43d
3
  size 5905
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c130f44dc8df141c24f8ee2d16fa69fad462930a44f091aa7a060fe67c6216e
3
  size 5905
training_metadata.json CHANGED
@@ -1,11 +1,11 @@
1
  {
2
- "trained_at": 1762993167.551098,
3
- "trained_at_readable": "2025-11-13 00:19:27",
4
- "samples_this_session": 1335,
5
- "new_rows_this_session": 10,
6
- "trained_rows_total": 163177,
7
  "total_db_rows": 164092,
8
- "percentage": 99.44238597859737,
9
  "final_loss": 0,
10
  "epochs": 3,
11
  "learning_rate": 5e-05,
 
1
  {
2
+ "trained_at": 1762995536.3221316,
3
+ "trained_at_readable": "2025-11-13 00:58:56",
4
+ "samples_this_session": 1364,
5
+ "new_rows_this_session": 4,
6
+ "trained_rows_total": 163187,
7
  "total_db_rows": 164092,
8
+ "percentage": 99.44848012090777,
9
  "final_loss": 0,
10
  "epochs": 3,
11
  "learning_rate": 5e-05,