--- tags: - autotrain - tabular - regression - tabular-regression datasets: - botClaiton/autotrain-data license: pddl --- # Model Trained Using AutoTrain - Problem type: Tabular regression ## Validation Metrics - r2: 0.9984848248937886 - mse: 2414.5671496869554 - mae: 25.17867390839041 - rmse: 49.13824528498098 - rmsle: 0.026803719250247764 - loss: 49.13824528498098 ## Best Params - learning_rate: 0.021447034999088264 - reg_lambda: 1.8519959907940258e-07 - reg_alpha: 0.4126490352165311 - subsample: 0.2980305940030723 - colsample_bytree: 0.9624113264792772 - max_depth: 6 - early_stopping_rounds: 213 - n_estimators: 15000 - eval_metric: rmse ## Usage ```python import json import joblib import pandas as pd model = joblib.load('model.joblib') config = json.load(open('config.json')) features = config['features'] # data = pd.read_csv("data.csv") data = data[features] predictions = model.predict(data) # or model.predict_proba(data) # predictions can be converted to original labels using label_encoders.pkl ```