--- license: bigscience-bloom-rail-1.0 datasets: - unicamp-dl/mmarco - rajpurkar/squad language: - fr - en pipeline_tag: sentence-similarity --- ## Evaluation To assess the performance of the reranker, we will utilize the "validation" split of the [SQuAD](https://huggingface.co/datasets/rajpurkar/squad) dataset. We will select the first question from each paragraph, along with the paragraph constituting the context that should be ranked Top-1 for an Oracle modeling. What's intriguing is that the number of themes is limited, and each context from a corresponding theme that does not match the query forms a hard negative (other contexts outside the theme are simple negatives). Thus, we can construct the following table, with each theme showing the number of contexts and associated query: | Theme name | Context number | |---------------------------------------------:|:---------------| | Normans | 39 | | Computational_complexity_theory | 48 | | Southern_California | 39 | | Sky_(United_Kingdom) | 22 | | Victoria_(Australia) | 25 | | Huguenot | 44 | | Steam_engine | 46 | | Oxygen | 43 | | 1973_oil_crisis | 24 | | European_Union_law | 40 | | Amazon_rainforest | 21 | | Ctenophora | 31 | | Fresno,_California | 28 | | Packet_switching | 23 | | Black_Death | 23 | | Geology | 25 | | Pharmacy | 26 | | Civil_disobedience | 26 | | Construction | 22 | | Private_school | 26 | | Harvard_University | 30 | | Jacksonville,_Florida | 21 | | Economic_inequality | 44 | | University_of_Chicago | 37 | | Yuan_dynasty | 47 | | Immune_system | 49 | | Intergovernmental_Panel_on_Climate_Change | 24 | | Prime_number | 31 | | Rhine | 44 | | Scottish_Parliament | 39 | | Islamism | 39 | | Imperialism | 39 | | Warsaw | 49 | | French_and_Indian_War | 46 | | Force | 44 | The evaluation corpus consists of 1204 pairs of query/context to be ranked. Initially, the evaluation scores will be calculated in cases where both the query and the context are in the same language (French/French). | Model (French/French) | Top-mean | Top-std | Top-1 (%) | Top-10 (%) | Top-100 (%) | MRR (x100) | mean score Top | std score Top | |:-----------------------------:|:----------:|:---------:|:---------:|:----------:|:-----------:|:----------:|:----------------:|:---------------:| | BM25 | 14.47 | 92.19 | 69.77 | 92.03 | 98.09 | 77.74 | NA | NA | | [CamemBERT](https://huggingface.co/antoinelouis/crossencoder-camembert-base-mmarcoFR) | 5.72 | 36.88 | 69.35 | 95.51 | 98.92 | 79.51 | 0.83 | 0.37 | | [DistilCamemBERT](https://huggingface.co/antoinelouis/crossencoder-distilcamembert-mmarcoFR) | 5.54 | 25.90 | 66.11 | 92.77 | 99.17 | 76.00 | 0.80 | 0.39 | | [mMiniLMv2-L12](https://huggingface.co/antoinelouis/crossencoder-mMiniLMv2-L12-mmarcoFR) | 4.43 | 30.27 | 71.51 | 95.68 | 99.42 | 80.17 | 0.78 | 0.38 | | [RoBERTa (multilingual)](https://huggingface.co/abbasgolestani/ag-nli-DeTS-sentence-similarity-v2) | 15.13 | 60.39 | 57.23 | 83.87 | 96.18 | 66.21 | 0.53 | 0.11 | | [cmarkea/bloomz-560m-reranking](https://huggingface.co/cmarkea/bloomz-560m-reranking) | 1.49 | 2.58 | 83.55 | 99.17 | 100 | 89.98 | 0.93 | 0.15 | | [cmarkea/bloomz-3b-reranking](https://huggingface.co/cmarkea/bloomz-3b-reranking) | 1.22 | 1.06 | 89.37 | 99.75 | 100 | 93.79 | 0.94 | 0.10 | Next, we evaluate the model in a cross-language context, with queries in French and contexts in English. | Model (French/English) | Top-mean | Top-std | Top-1 (%) | Top-10 (%) | Top-100 (%) | MRR (x100) | mean score Top | std score Top | |:-----------------------------:|:----------:|:---------:|:---------:|:----------:|:-----------:|:----------:|:----------------:|:---------------:| | BM25 | 288.04 | 371.46 | 21.93 | 41.93 | 55.15 | 28.41 | NA | NA | | [CamemBERT](https://huggingface.co/antoinelouis/crossencoder-camembert-base-mmarcoFR) | 12.20 | 61.39 | 59.55 | 89.71 | 97.42 | 70.38 | 0.65 | 0.47 | | [DistilCamemBERT](https://huggingface.co/antoinelouis/crossencoder-distilcamembert-mmarcoFR) | 40.97 | 104.78 | 25.66 | 64.78 | 88.62 | 38.83 | 0.53 | 0.49 | | [mMiniLMv2-L12](https://huggingface.co/antoinelouis/crossencoder-mMiniLMv2-L12-mmarcoFR) | 6.91 | 32.16 | 59.88 | 89.95 | 99.09 | 70.39 | 0.61 | 0.46 | | [RoBERTa (multilingual)](https://huggingface.co/abbasgolestani/ag-nli-DeTS-sentence-similarity-v2) | 79.32 | 153.62 | 27.91 | 49.50 | 78.16 | 35.41 | 0.40 | 0.12 | | [cmarkea/bloomz-560m-reranking](https://huggingface.co/cmarkea/bloomz-560m-reranking) | 1.51 | 1.92 | 81.89 | 99.09 | 100 | 88.64 | 0.92 | 0.15 | | [cmarkea/bloomz-3b-reranking](https://huggingface.co/cmarkea/bloomz-3b-reranking) | 1.22 | 0.98 | 89.20 | 99.84 | 100 | 93.63 | 0.94 | 0.10 | As observed, the cross-language context does not significantly impact the behavior of our models. If the model is used in a reranking context along with filtering of the Top-K results from a search, a threshold of 0.8 could be applied to filter the contexts outputted by the retriever, thereby reducing noise issues present in the contexts for RAG-type applications. How to Use Bloomz-3b-reranking ------------------------------ The following example utilizes the API Pipeline of the Transformers library. ```python from transformers import pipeline reranker = pipeline( task='feature-extraction', model='cmarkea/bloomz-3b-reranking', top_k=None ) similarity = reranker( [ dict( text=context, # the model was trained with context in `text` argument text_pair=query # and query in `text_pair` argument. ) for context in contexts ] ) contexts_reranked = sorted( filter( lambda x: x[0]['label'] == "LABEL_1", zip(similarity, context_list) ), key=lambda x: x[0] ) score, contexts_cleaned = zip( *filter( lambda x: x[0] >= 0.8 ) ) ``` Citation -------- ```bibtex @online{DeBloomzReranking, AUTHOR = {Cyrile Delestre}, ORGANIZATION = {Cr{\'e}dit Mutuel Ark{\'e}a}, URL = {https://huggingface.co/cmarkea/bloomz-3b-reranking}, YEAR = {2024}, KEYWORDS = {NLP ; Transformers ; LLM ; Bloomz}, } ```