cloudwalkerw commited on
Commit
2d05f74
·
1 Parent(s): e7aaebd

Model save

Browse files
Files changed (2) hide show
  1. README.md +259 -0
  2. pytorch_model.bin +1 -1
README.md ADDED
@@ -0,0 +1,259 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/wavlm-base
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: wavlm-base_2
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # wavlm-base_2
16
+
17
+ This model is a fine-tuned version of [microsoft/wavlm-base](https://huggingface.co/microsoft/wavlm-base) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.3326
20
+ - Accuracy: 0.8974
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 0.0003
40
+ - train_batch_size: 16
41
+ - eval_batch_size: 2
42
+ - seed: 0
43
+ - gradient_accumulation_steps: 4
44
+ - total_train_batch_size: 64
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_ratio: 0.1
48
+ - num_epochs: 50.0
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
53
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|
54
+ | 0.4872 | 0.25 | 100 | 0.2180 | 0.8974 |
55
+ | 0.1571 | 0.5 | 200 | 0.2582 | 0.9334 |
56
+ | 0.0644 | 0.76 | 300 | 0.0244 | 0.9966 |
57
+ | 0.0553 | 1.01 | 400 | 0.1156 | 0.9928 |
58
+ | 0.1108 | 1.26 | 500 | 0.1576 | 0.9898 |
59
+ | 0.0849 | 1.51 | 600 | 0.0871 | 0.9947 |
60
+ | 0.0635 | 1.76 | 700 | 0.1088 | 0.9939 |
61
+ | 0.0504 | 2.02 | 800 | 0.4074 | 0.9790 |
62
+ | 0.1075 | 2.27 | 900 | 0.2955 | 0.9814 |
63
+ | 0.2387 | 2.52 | 1000 | 0.0651 | 0.9956 |
64
+ | 0.3052 | 2.77 | 1100 | 0.2379 | 0.8974 |
65
+ | 0.3336 | 3.02 | 1200 | 0.3527 | 0.8974 |
66
+ | 0.3322 | 3.28 | 1300 | 0.3307 | 0.8974 |
67
+ | 0.3201 | 3.53 | 1400 | 0.3405 | 0.8974 |
68
+ | 0.3406 | 3.78 | 1500 | 0.3335 | 0.8974 |
69
+ | 0.3475 | 4.03 | 1600 | 0.3341 | 0.8974 |
70
+ | 0.3312 | 4.28 | 1700 | 0.3361 | 0.8974 |
71
+ | 0.3367 | 4.54 | 1800 | 0.3310 | 0.8974 |
72
+ | 0.3284 | 4.79 | 1900 | 0.3339 | 0.8974 |
73
+ | 0.3267 | 5.04 | 2000 | 0.3350 | 0.8974 |
74
+ | 0.338 | 5.29 | 2100 | 0.3308 | 0.8974 |
75
+ | 0.3277 | 5.55 | 2200 | 0.3309 | 0.8974 |
76
+ | 0.3294 | 5.8 | 2300 | 0.3313 | 0.8974 |
77
+ | 0.3315 | 6.05 | 2400 | 0.3360 | 0.8974 |
78
+ | 0.3397 | 6.3 | 2500 | 0.3307 | 0.8974 |
79
+ | 0.3318 | 6.55 | 2600 | 0.3359 | 0.8974 |
80
+ | 0.3312 | 6.81 | 2700 | 0.3308 | 0.8974 |
81
+ | 0.3155 | 7.06 | 2800 | 0.3317 | 0.8974 |
82
+ | 0.3304 | 7.31 | 2900 | 0.3362 | 0.8974 |
83
+ | 0.338 | 7.56 | 3000 | 0.3342 | 0.8974 |
84
+ | 0.3241 | 7.81 | 3100 | 0.3310 | 0.8974 |
85
+ | 0.3325 | 8.07 | 3200 | 0.3326 | 0.8974 |
86
+ | 0.3202 | 8.32 | 3300 | 0.3345 | 0.8974 |
87
+ | 0.3315 | 8.57 | 3400 | 0.3335 | 0.8974 |
88
+ | 0.3288 | 8.82 | 3500 | 0.3312 | 0.8974 |
89
+ | 0.3371 | 9.07 | 3600 | 0.3401 | 0.8974 |
90
+ | 0.3409 | 9.33 | 3700 | 0.3330 | 0.8974 |
91
+ | 0.3236 | 9.58 | 3800 | 0.3330 | 0.8974 |
92
+ | 0.3224 | 9.83 | 3900 | 0.3321 | 0.8974 |
93
+ | 0.3439 | 10.08 | 4000 | 0.3326 | 0.8974 |
94
+ | 0.3382 | 10.33 | 4100 | 0.3310 | 0.8974 |
95
+ | 0.3307 | 10.59 | 4200 | 0.3382 | 0.8974 |
96
+ | 0.3231 | 10.84 | 4300 | 0.3325 | 0.8974 |
97
+ | 0.3095 | 11.09 | 4400 | 0.3348 | 0.8974 |
98
+ | 0.3442 | 11.34 | 4500 | 0.3327 | 0.8974 |
99
+ | 0.3269 | 11.59 | 4600 | 0.3326 | 0.8974 |
100
+ | 0.3323 | 11.85 | 4700 | 0.3308 | 0.8974 |
101
+ | 0.3313 | 12.1 | 4800 | 0.3308 | 0.8974 |
102
+ | 0.3283 | 12.35 | 4900 | 0.3314 | 0.8974 |
103
+ | 0.3331 | 12.6 | 5000 | 0.3307 | 0.8974 |
104
+ | 0.3317 | 12.85 | 5100 | 0.3344 | 0.8974 |
105
+ | 0.3283 | 13.11 | 5200 | 0.3320 | 0.8974 |
106
+ | 0.3263 | 13.36 | 5300 | 0.3311 | 0.8974 |
107
+ | 0.3421 | 13.61 | 5400 | 0.3307 | 0.8974 |
108
+ | 0.3164 | 13.86 | 5500 | 0.3318 | 0.8974 |
109
+ | 0.3315 | 14.11 | 5600 | 0.3335 | 0.8974 |
110
+ | 0.3415 | 14.37 | 5700 | 0.3315 | 0.8974 |
111
+ | 0.3325 | 14.62 | 5800 | 0.3307 | 0.8974 |
112
+ | 0.3264 | 14.87 | 5900 | 0.3330 | 0.8974 |
113
+ | 0.3223 | 15.12 | 6000 | 0.3307 | 0.8974 |
114
+ | 0.3289 | 15.37 | 6100 | 0.3329 | 0.8974 |
115
+ | 0.3353 | 15.63 | 6200 | 0.3311 | 0.8974 |
116
+ | 0.3246 | 15.88 | 6300 | 0.3311 | 0.8974 |
117
+ | 0.3425 | 16.13 | 6400 | 0.3307 | 0.8974 |
118
+ | 0.331 | 16.38 | 6500 | 0.3307 | 0.8974 |
119
+ | 0.3293 | 16.64 | 6600 | 0.3353 | 0.8974 |
120
+ | 0.3249 | 16.89 | 6700 | 0.3339 | 0.8974 |
121
+ | 0.3214 | 17.14 | 6800 | 0.3338 | 0.8974 |
122
+ | 0.3259 | 17.39 | 6900 | 0.3327 | 0.8974 |
123
+ | 0.3408 | 17.64 | 7000 | 0.3318 | 0.8974 |
124
+ | 0.3258 | 17.9 | 7100 | 0.3318 | 0.8974 |
125
+ | 0.3299 | 18.15 | 7200 | 0.3308 | 0.8974 |
126
+ | 0.327 | 18.4 | 7300 | 0.3371 | 0.8974 |
127
+ | 0.3317 | 18.65 | 7400 | 0.3308 | 0.8974 |
128
+ | 0.3291 | 18.9 | 7500 | 0.3310 | 0.8974 |
129
+ | 0.3263 | 19.16 | 7600 | 0.3325 | 0.8974 |
130
+ | 0.3223 | 19.41 | 7700 | 0.3346 | 0.8974 |
131
+ | 0.3403 | 19.66 | 7800 | 0.3316 | 0.8974 |
132
+ | 0.3265 | 19.91 | 7900 | 0.3309 | 0.8974 |
133
+ | 0.33 | 20.16 | 8000 | 0.3318 | 0.8974 |
134
+ | 0.3488 | 20.42 | 8100 | 0.3313 | 0.8974 |
135
+ | 0.3293 | 20.67 | 8200 | 0.3335 | 0.8974 |
136
+ | 0.3095 | 20.92 | 8300 | 0.3356 | 0.8974 |
137
+ | 0.3366 | 21.17 | 8400 | 0.3332 | 0.8974 |
138
+ | 0.317 | 21.42 | 8500 | 0.3338 | 0.8974 |
139
+ | 0.3299 | 21.68 | 8600 | 0.3308 | 0.8974 |
140
+ | 0.3434 | 21.93 | 8700 | 0.3310 | 0.8974 |
141
+ | 0.3208 | 22.18 | 8800 | 0.3309 | 0.8974 |
142
+ | 0.3351 | 22.43 | 8900 | 0.3324 | 0.8974 |
143
+ | 0.3301 | 22.68 | 9000 | 0.3308 | 0.8974 |
144
+ | 0.3196 | 22.94 | 9100 | 0.3330 | 0.8974 |
145
+ | 0.3339 | 23.19 | 9200 | 0.3333 | 0.8974 |
146
+ | 0.3249 | 23.44 | 9300 | 0.3308 | 0.8974 |
147
+ | 0.3247 | 23.69 | 9400 | 0.3338 | 0.8974 |
148
+ | 0.3369 | 23.94 | 9500 | 0.3313 | 0.8974 |
149
+ | 0.3291 | 24.2 | 9600 | 0.3320 | 0.8974 |
150
+ | 0.3307 | 24.45 | 9700 | 0.3309 | 0.8974 |
151
+ | 0.3328 | 24.7 | 9800 | 0.3307 | 0.8974 |
152
+ | 0.3277 | 24.95 | 9900 | 0.3342 | 0.8974 |
153
+ | 0.3278 | 25.2 | 10000 | 0.3310 | 0.8974 |
154
+ | 0.3197 | 25.46 | 10100 | 0.3349 | 0.8974 |
155
+ | 0.3273 | 25.71 | 10200 | 0.3321 | 0.8974 |
156
+ | 0.3345 | 25.96 | 10300 | 0.3312 | 0.8974 |
157
+ | 0.3351 | 26.21 | 10400 | 0.3325 | 0.8974 |
158
+ | 0.3144 | 26.47 | 10500 | 0.3346 | 0.8974 |
159
+ | 0.3361 | 26.72 | 10600 | 0.3311 | 0.8974 |
160
+ | 0.3334 | 26.97 | 10700 | 0.3307 | 0.8974 |
161
+ | 0.3287 | 27.22 | 10800 | 0.3373 | 0.8974 |
162
+ | 0.3374 | 27.47 | 10900 | 0.3307 | 0.8974 |
163
+ | 0.3302 | 27.73 | 11000 | 0.3307 | 0.8974 |
164
+ | 0.3245 | 27.98 | 11100 | 0.3315 | 0.8974 |
165
+ | 0.3353 | 28.23 | 11200 | 0.3335 | 0.8974 |
166
+ | 0.3191 | 28.48 | 11300 | 0.3336 | 0.8974 |
167
+ | 0.3226 | 28.73 | 11400 | 0.3308 | 0.8974 |
168
+ | 0.3384 | 28.99 | 11500 | 0.3322 | 0.8974 |
169
+ | 0.3368 | 29.24 | 11600 | 0.3337 | 0.8974 |
170
+ | 0.3224 | 29.49 | 11700 | 0.3332 | 0.8974 |
171
+ | 0.3224 | 29.74 | 11800 | 0.3318 | 0.8974 |
172
+ | 0.3363 | 29.99 | 11900 | 0.3310 | 0.8974 |
173
+ | 0.327 | 30.25 | 12000 | 0.3307 | 0.8974 |
174
+ | 0.3291 | 30.5 | 12100 | 0.3307 | 0.8974 |
175
+ | 0.3369 | 30.75 | 12200 | 0.3322 | 0.8974 |
176
+ | 0.3211 | 31.0 | 12300 | 0.3329 | 0.8974 |
177
+ | 0.329 | 31.25 | 12400 | 0.3321 | 0.8974 |
178
+ | 0.3206 | 31.51 | 12500 | 0.3309 | 0.8974 |
179
+ | 0.3339 | 31.76 | 12600 | 0.3332 | 0.8974 |
180
+ | 0.3323 | 32.01 | 12700 | 0.3316 | 0.8974 |
181
+ | 0.3273 | 32.26 | 12800 | 0.3323 | 0.8974 |
182
+ | 0.3362 | 32.51 | 12900 | 0.3307 | 0.8974 |
183
+ | 0.3387 | 32.77 | 13000 | 0.3309 | 0.8974 |
184
+ | 0.3173 | 33.02 | 13100 | 0.3311 | 0.8974 |
185
+ | 0.3291 | 33.27 | 13200 | 0.3309 | 0.8974 |
186
+ | 0.3316 | 33.52 | 13300 | 0.3315 | 0.8974 |
187
+ | 0.3366 | 33.77 | 13400 | 0.3332 | 0.8974 |
188
+ | 0.3115 | 34.03 | 13500 | 0.3383 | 0.8974 |
189
+ | 0.3275 | 34.28 | 13600 | 0.3324 | 0.8974 |
190
+ | 0.3373 | 34.53 | 13700 | 0.3315 | 0.8974 |
191
+ | 0.3247 | 34.78 | 13800 | 0.3313 | 0.8974 |
192
+ | 0.3349 | 35.03 | 13900 | 0.3325 | 0.8974 |
193
+ | 0.3223 | 35.29 | 14000 | 0.3312 | 0.8974 |
194
+ | 0.3321 | 35.54 | 14100 | 0.3308 | 0.8974 |
195
+ | 0.3304 | 35.79 | 14200 | 0.3316 | 0.8974 |
196
+ | 0.3262 | 36.04 | 14300 | 0.3320 | 0.8974 |
197
+ | 0.3239 | 36.29 | 14400 | 0.3317 | 0.8974 |
198
+ | 0.3325 | 36.55 | 14500 | 0.3308 | 0.8974 |
199
+ | 0.325 | 36.8 | 14600 | 0.3316 | 0.8974 |
200
+ | 0.3416 | 37.05 | 14700 | 0.3311 | 0.8974 |
201
+ | 0.3226 | 37.3 | 14800 | 0.3309 | 0.8974 |
202
+ | 0.3286 | 37.56 | 14900 | 0.3307 | 0.8974 |
203
+ | 0.3284 | 37.81 | 15000 | 0.3312 | 0.8974 |
204
+ | 0.3298 | 38.06 | 15100 | 0.3326 | 0.8974 |
205
+ | 0.3383 | 38.31 | 15200 | 0.3311 | 0.8974 |
206
+ | 0.3418 | 38.56 | 15300 | 0.3308 | 0.8974 |
207
+ | 0.3123 | 38.82 | 15400 | 0.3311 | 0.8974 |
208
+ | 0.3237 | 39.07 | 15500 | 0.3346 | 0.8974 |
209
+ | 0.3261 | 39.32 | 15600 | 0.3325 | 0.8974 |
210
+ | 0.3269 | 39.57 | 15700 | 0.3312 | 0.8974 |
211
+ | 0.3267 | 39.82 | 15800 | 0.3319 | 0.8974 |
212
+ | 0.3381 | 40.08 | 15900 | 0.3327 | 0.8974 |
213
+ | 0.3238 | 40.33 | 16000 | 0.3326 | 0.8974 |
214
+ | 0.3299 | 40.58 | 16100 | 0.3320 | 0.8974 |
215
+ | 0.3385 | 40.83 | 16200 | 0.3309 | 0.8974 |
216
+ | 0.3268 | 41.08 | 16300 | 0.3322 | 0.8974 |
217
+ | 0.3253 | 41.34 | 16400 | 0.3320 | 0.8974 |
218
+ | 0.3261 | 41.59 | 16500 | 0.3314 | 0.8974 |
219
+ | 0.3362 | 41.84 | 16600 | 0.3324 | 0.8974 |
220
+ | 0.3203 | 42.09 | 16700 | 0.3326 | 0.8974 |
221
+ | 0.325 | 42.34 | 16800 | 0.3323 | 0.8974 |
222
+ | 0.3172 | 42.6 | 16900 | 0.3326 | 0.8974 |
223
+ | 0.3361 | 42.85 | 17000 | 0.3308 | 0.8974 |
224
+ | 0.3432 | 43.1 | 17100 | 0.3310 | 0.8974 |
225
+ | 0.3396 | 43.35 | 17200 | 0.3313 | 0.8974 |
226
+ | 0.3163 | 43.6 | 17300 | 0.3328 | 0.8974 |
227
+ | 0.3353 | 43.86 | 17400 | 0.3318 | 0.8974 |
228
+ | 0.3299 | 44.11 | 17500 | 0.3317 | 0.8974 |
229
+ | 0.3213 | 44.36 | 17600 | 0.3319 | 0.8974 |
230
+ | 0.3253 | 44.61 | 17700 | 0.3329 | 0.8974 |
231
+ | 0.3391 | 44.86 | 17800 | 0.3322 | 0.8974 |
232
+ | 0.3179 | 45.12 | 17900 | 0.3330 | 0.8974 |
233
+ | 0.3348 | 45.37 | 18000 | 0.3321 | 0.8974 |
234
+ | 0.3116 | 45.62 | 18100 | 0.3326 | 0.8974 |
235
+ | 0.3334 | 45.87 | 18200 | 0.3322 | 0.8974 |
236
+ | 0.3401 | 46.12 | 18300 | 0.3315 | 0.8974 |
237
+ | 0.3381 | 46.38 | 18400 | 0.3311 | 0.8974 |
238
+ | 0.3154 | 46.63 | 18500 | 0.3327 | 0.8974 |
239
+ | 0.3348 | 46.88 | 18600 | 0.3322 | 0.8974 |
240
+ | 0.3285 | 47.13 | 18700 | 0.3325 | 0.8974 |
241
+ | 0.3256 | 47.39 | 18800 | 0.3329 | 0.8974 |
242
+ | 0.3389 | 47.64 | 18900 | 0.3325 | 0.8974 |
243
+ | 0.3288 | 47.89 | 19000 | 0.3327 | 0.8974 |
244
+ | 0.3172 | 48.14 | 19100 | 0.3327 | 0.8974 |
245
+ | 0.3211 | 48.39 | 19200 | 0.3325 | 0.8974 |
246
+ | 0.3348 | 48.65 | 19300 | 0.3325 | 0.8974 |
247
+ | 0.3327 | 48.9 | 19400 | 0.3326 | 0.8974 |
248
+ | 0.3341 | 49.15 | 19500 | 0.3326 | 0.8974 |
249
+ | 0.3344 | 49.4 | 19600 | 0.3325 | 0.8974 |
250
+ | 0.3207 | 49.65 | 19700 | 0.3326 | 0.8974 |
251
+ | 0.3299 | 49.91 | 19800 | 0.3326 | 0.8974 |
252
+
253
+
254
+ ### Framework versions
255
+
256
+ - Transformers 4.34.0.dev0
257
+ - Pytorch 2.0.0.post302
258
+ - Datasets 2.14.5
259
+ - Tokenizers 0.13.3
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d18d59946ee0d5effaba46796b40f198907ceded6fc3692c52e3069e482636e2
3
  size 378402813
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4afee26448c4b6ece687a1108698f2b7b9f1c98e1653472a01f597d6473e29ec
3
  size 378402813