--- license: wtfpl datasets: - HuggingFaceH4/no_robots pipeline_tag: text-generation --- # MAMBA (2.8B) 🐍 fine-tuned on H4/no_robots dataset for chat / instruction Model Card is still WIP!
mamba-hermes logo
## Base model info Mamba is a new state space model architecture showing promising performance on information-dense data such as language modeling, where previous subquadratic models fall short of Transformers. It is based on the line of progress on [structured state space models](https://github.com/state-spaces/s4), with an efficient hardware-aware design and implementation in the spirit of [FlashAttention](https://github.com/Dao-AILab/flash-attention). ## Dataset info _Look Ma, an instruction dataset that wasn't generated by GPTs!_ ### Dataset Description - **Repository:** https://github.com/huggingface/alignment-handbook - **Paper:** - **Leaderboard:** https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard - **Point of Contact:** Lewis Tunstall #### Dataset Summary No Robots is a high-quality dataset of 10,000 instructions and demonstrations created by skilled human annotators. This data can be used for supervised fine-tuning (SFT) to make language models follow instructions better. No Robots was modelled after the instruction dataset described in OpenAI's [InstructGPT paper](https://huggingface.co/papers/2203.02155), and is comprised mostly of single-turn instructions across the following categories: | Category | Count | |:-----------|--------:| | Generation | 4560 | | Open QA | 1240 | | Brainstorm | 1120 | | Chat | 850 | | Rewrite | 660 | | Summarize | 420 | | Coding | 350 | | Classify | 350 | | Closed QA | 260 | | Extract | 190 | ## Usage ```sh pip install torch==2.1.0 transformers==4.35.0 causal-conv1d==1.0.0 mamba-ssm==1.0.1 ``` ```py import torch from transformers import AutoTokenizer, AutoModelForCausalLM from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel CHAT_TEMPLATE_ID = "HuggingFaceH4/zephyr-7b-beta" device = "cuda:0" if torch.cuda.is_available() else "cpu" model_name = "clibrain/mamba-2.8b-chat-no_robots" eos_token = "<|endoftext|>" tokenizer = AutoTokenizer.from_pretrained(model_name) tokenizer.eos_token = eos_token tokenizer.pad_token = tokenizer.eos_token tokenizer.chat_template = AutoTokenizer.from_pretrained(CHAT_TEMPLATE_ID).chat_template model = MambaLMHeadModel.from_pretrained( model_name, device=device, dtype=torch.float16) messages = [] prompt = "Tell me 5 sites to visit in Spain" messages.append(dict(role="user", content=prompt)) input_ids = tokenizer.apply_chat_template( messages, return_tensors="pt", add_generation_prompt=True ).to(device) out = model.generate( input_ids=input_ids, max_length=2000, temperature=0.9, top_p=0.7, eos_token_id=tokenizer.eos_token_id, ) decoded = tokenizer.batch_decode(out) assistant_message = ( decoded[0].split("<|assistant|>\n")[-1].replace(eos, "") ) print(assistant_message) ``` ## Gradio Demo ```sh git clone https://github.com/mrm8488/mamba-chat.git cd mamba-chat pip install -r requirements.txt pip install -q gradio==4.8.0 python app.py \ --model clibrain/mamba-2.8b-chat-no_robots \ --share ``` ## Evaluations Coming soon! ## Acknowledgments Thanks to [mamba-chat](https://github.com/havenhq/mamba-chat/tree/main) for heavily inspiring our work