--- license: apache-2.0 language: - es pipeline_tag: text-generation library_name: transformers inference: false --- # Llama-2-13B-ft-instruct-es [Llama 2 (13B)](https://huggingface.co/meta-llama/Llama-2-13b) fine-tuned on [Clibrain](https://huggingface.co/clibrain)'s Spanish instructions dataset. ## Model Details Llama 2 is a collection of pre-trained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. This is the repository for the 7B pre-trained model. ## Example of Usage ```py import torch from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig model_id = "clibrain/Llama-2-13b-ft-instruct-es" model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).to("cuda") tokenizer = AutoTokenizer.from_pretrained(model_id) def create_instruction(instruction, input_data=None, context=None): sections = { "Instrucción": instruction, "Entrada": input_data, "Contexto": context, } system_prompt = "A continuación hay una instrucción que describe una tarea, junto con una entrada que proporciona más contexto. Escriba una respuesta que complete adecuadamente la solicitud.\n\n" prompt = system_prompt for title, content in sections.items(): if content is not None: prompt += f"### {title}:\n{content}\n\n" prompt += "### Respuesta:\n" return prompt def generate( instruction, input=None, context=None, max_new_tokens=128, temperature=0.1, top_p=0.75, top_k=40, num_beams=4, **kwargs ): prompt = create_instruction(instruction, input, context) print(prompt.replace("### Respuesta:\n", "")) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to("cuda") attention_mask = inputs["attention_mask"].to("cuda") generation_config = GenerationConfig( temperature=temperature, top_p=top_p, top_k=top_k, num_beams=num_beams, **kwargs, ) with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, attention_mask=attention_mask, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=max_new_tokens, early_stopping=True ) s = generation_output.sequences[0] output = tokenizer.decode(s) return output.split("### Respuesta:")[1].lstrip("\n") instruction = "Dame una lista de lugares a visitar en España." print(generate(instruction)) ``` ## Example of Usage with `pipelines` ```py from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_id = "clibrain/Llama-2-13b-ft-instruct-es" model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).to("cuda") tokenizer = AutoTokenizer.from_pretrained(model_id) pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200, device=0) prompt = """ A continuación hay una instrucción que describe una tarea. Escriba una respuesta que complete adecuadamente la solicitud. ### Instrucción: Dame una lista de 5 lugares a visitar en España. ### Respuesta: """ result = pipe(prompt) print(result[0]['generated_text']) ```