--- library_name: transformers license: mit base_model: almanach/camembert-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: my_awesome_wnut_model results: [] --- # my_awesome_wnut_model This model is a fine-tuned version of [almanach/camembert-base](https://huggingface.co/almanach/camembert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0159 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.9970 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 160 | 0.1652 | 0.0 | 0.0 | 0.0 | 0.9528 | | No log | 2.0 | 320 | 0.0499 | 0.0 | 0.0 | 0.0 | 0.9943 | | No log | 3.0 | 480 | 0.0303 | 0.0 | 0.0 | 0.0 | 0.9960 | | 0.1412 | 4.0 | 640 | 0.0239 | 0.0 | 0.0 | 0.0 | 0.9967 | | 0.1412 | 5.0 | 800 | 0.0206 | 0.0 | 0.0 | 0.0 | 0.9968 | | 0.1412 | 6.0 | 960 | 0.0186 | 0.0 | 0.0 | 0.0 | 0.9969 | | 0.0254 | 7.0 | 1120 | 0.0173 | 0.0 | 0.0 | 0.0 | 0.9970 | | 0.0254 | 8.0 | 1280 | 0.0165 | 0.0 | 0.0 | 0.0 | 0.9970 | | 0.0254 | 9.0 | 1440 | 0.0161 | 0.0 | 0.0 | 0.0 | 0.9970 | | 0.0184 | 10.0 | 1600 | 0.0159 | 0.0 | 0.0 | 0.0 | 0.9970 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu118 - Datasets 3.1.0 - Tokenizers 0.20.3