--- library_name: transformers license: apache-2.0 base_model: google-t5/t5-small tags: - generated_from_trainer model-index: - name: T5_small_fine_tuned results: [] --- # T5_small_fine_tuned This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.6491 - Rougel Fmeasure: 0.1247 - Bertscore F1: -0.0215 - Combined Score: 0.0516 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rougel Fmeasure | Bertscore F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:---------------:|:------------:|:--------------:| | 1.9205 | 1.0 | 2369 | 2.6825 | 0.113 | -0.0448 | 0.0341 | | 1.8233 | 2.0 | 4738 | 2.6561 | 0.1227 | -0.0249 | 0.0489 | | 1.7693 | 3.0 | 7107 | 2.6505 | 0.1246 | -0.0215 | 0.0515 | | 1.7611 | 4.0 | 9476 | 2.6491 | 0.1247 | -0.0215 | 0.0516 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3