--- base_model: bert-base-cased model-index: - name: bert-base-cased-ner-rfb results: [] license: apache-2.0 language: - en metrics: - accuracy - f1 pipeline_tag: token-classification --- This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) on a private dataset. It achieves the following results on the evaluation set: - eval_loss: 1.2720 - eval_FILL_precision: 0.7627 - eval_FILL_recall: 0.7759 - eval_FILL_f1: 0.7692 - eval_FILL_number: 58 - eval_ROLE_precision: 0.8125 - eval_ROLE_recall: 0.8125 - eval_ROLE_f1: 0.8125 - eval_ROLE_number: 48 - eval_overall_precision: 0.7850 - eval_overall_recall: 0.7925 - eval_overall_f1: 0.7887 - eval_overall_accuracy: 0.8289 - eval_runtime: 1.3592 - eval_samples_per_second: 44.144 - eval_steps_per_second: 5.886 - step: 0 It achieves the following results on the test set: - test_FILL_f1: 0.8039 - test_FILL_number: 46, - test_FILL_precision: 0.7321 - test_FILL_recall: 0.8913 - test_ROLE_f1: 0.8182 - test_ROLE_number: 42, - test_ROLE_precision: 0.7826 - test_ROLE_recall: 0.8571 - test_loss: 0.9132 - test_overall_accuracy: 0.8791 - test_overall_f1: 0.8105 - test_overall_precision: 0.7549 - test_overall_recall: 0.875 - test_runtime: 0.9583 - test_samples_per_second: 63.652 - test_steps_per_second: 8.348 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 600 ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.14.6 - Tokenizers 0.19.1