Sentence Similarity
Safetensors
Japanese
bert
feature-extraction
hpprc commited on
Commit
d2c558a
1 Parent(s): 1c7a9ab

Upload 17 files

Browse files
result/Classification/scores_amazon_counterfactual_classification.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "macro_f1",
3
+ "metric_value": 0.7665550732749669,
4
+ "details": {
5
+ "optimal_classifier_name": "logreg",
6
+ "val_scores": {
7
+ "knn_cosine_k_2": {
8
+ "accuracy": 0.9098712446351931,
9
+ "macro_f1": 0.6139035745285253
10
+ },
11
+ "logreg": {
12
+ "accuracy": 0.9206008583690987,
13
+ "macro_f1": 0.7381028328396749
14
+ }
15
+ },
16
+ "test_scores": {
17
+ "logreg": {
18
+ "accuracy": 0.923982869379015,
19
+ "macro_f1": 0.7665550732749669
20
+ }
21
+ }
22
+ }
23
+ }
result/Classification/scores_amazon_review_classification.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "macro_f1",
3
+ "metric_value": 0.5575876111411316,
4
+ "details": {
5
+ "optimal_classifier_name": "logreg",
6
+ "val_scores": {
7
+ "knn_cosine_k_2": {
8
+ "accuracy": 0.4314,
9
+ "macro_f1": 0.4209604852624187
10
+ },
11
+ "logreg": {
12
+ "accuracy": 0.5702,
13
+ "macro_f1": 0.5653832808449197
14
+ }
15
+ },
16
+ "test_scores": {
17
+ "logreg": {
18
+ "accuracy": 0.562,
19
+ "macro_f1": 0.5575876111411316
20
+ }
21
+ }
22
+ }
23
+ }
result/Classification/scores_massive_intent_classification.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "macro_f1",
3
+ "metric_value": 0.8141210121425055,
4
+ "details": {
5
+ "optimal_classifier_name": "logreg",
6
+ "val_scores": {
7
+ "knn_cosine_k_2": {
8
+ "accuracy": 0.7757009345794392,
9
+ "macro_f1": 0.7456574019302791
10
+ },
11
+ "logreg": {
12
+ "accuracy": 0.8421052631578947,
13
+ "macro_f1": 0.8271757887821682
14
+ }
15
+ },
16
+ "test_scores": {
17
+ "logreg": {
18
+ "accuracy": 0.8416274377942166,
19
+ "macro_f1": 0.8141210121425055
20
+ }
21
+ }
22
+ }
23
+ }
result/Classification/scores_massive_scenario_classification.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "macro_f1",
3
+ "metric_value": 0.8848812917656395,
4
+ "details": {
5
+ "optimal_classifier_name": "logreg",
6
+ "val_scores": {
7
+ "knn_cosine_k_2": {
8
+ "accuracy": 0.8657156910969012,
9
+ "macro_f1": 0.8581068338871749
10
+ },
11
+ "logreg": {
12
+ "accuracy": 0.8898180029513035,
13
+ "macro_f1": 0.887764836229313
14
+ }
15
+ },
16
+ "test_scores": {
17
+ "logreg": {
18
+ "accuracy": 0.8860121049092132,
19
+ "macro_f1": 0.8848812917656395
20
+ }
21
+ }
22
+ }
23
+ }
result/Clustering/scores_livedoor_news.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "v_measure_score",
3
+ "metric_value": 0.5427223607801758,
4
+ "details": {
5
+ "optimal_clustering_model_name": "BisectingKMeans",
6
+ "val_scores": {
7
+ "MiniBatchKMeans": {
8
+ "v_measure_score": 0.5453092926343514,
9
+ "homogeneity_score": 0.5376167786682042,
10
+ "completeness_score": 0.5532251395371498
11
+ },
12
+ "AgglomerativeClustering": {
13
+ "v_measure_score": 0.5221218542278205,
14
+ "homogeneity_score": 0.5145096860981694,
15
+ "completeness_score": 0.5299626488611732
16
+ },
17
+ "BisectingKMeans": {
18
+ "v_measure_score": 0.5498693214751904,
19
+ "homogeneity_score": 0.5475063196854639,
20
+ "completeness_score": 0.552252808804315
21
+ },
22
+ "Birch": {
23
+ "v_measure_score": 0.5208037508658081,
24
+ "homogeneity_score": 0.5132767763409753,
25
+ "completeness_score": 0.5285547703444661
26
+ }
27
+ },
28
+ "test_scores": {
29
+ "BisectingKMeans": {
30
+ "v_measure_score": 0.5427223607801758,
31
+ "homogeneity_score": 0.5417341205522448,
32
+ "completeness_score": 0.5437142131253088
33
+ }
34
+ }
35
+ }
36
+ }
result/Clustering/scores_mewsc16.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "v_measure_score",
3
+ "metric_value": 0.5404099864321413,
4
+ "details": {
5
+ "optimal_clustering_model_name": "AgglomerativeClustering",
6
+ "val_scores": {
7
+ "MiniBatchKMeans": {
8
+ "v_measure_score": 0.502791381026052,
9
+ "homogeneity_score": 0.5517784337158165,
10
+ "completeness_score": 0.46179324043437603
11
+ },
12
+ "AgglomerativeClustering": {
13
+ "v_measure_score": 0.5302546097654716,
14
+ "homogeneity_score": 0.5735135314580632,
15
+ "completeness_score": 0.4930638394517115
16
+ },
17
+ "BisectingKMeans": {
18
+ "v_measure_score": 0.48656257334532493,
19
+ "homogeneity_score": 0.5342920872487864,
20
+ "completeness_score": 0.4466613135580361
21
+ },
22
+ "Birch": {
23
+ "v_measure_score": 0.49305647750510134,
24
+ "homogeneity_score": 0.5374392451928177,
25
+ "completeness_score": 0.45544495608862656
26
+ }
27
+ },
28
+ "test_scores": {
29
+ "AgglomerativeClustering": {
30
+ "v_measure_score": 0.5404099864321413,
31
+ "homogeneity_score": 0.5789428395923124,
32
+ "completeness_score": 0.5066863291321174
33
+ }
34
+ }
35
+ }
36
+ }
result/PairClassification/scores_paws_x_ja.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "binary_f1",
3
+ "metric_value": 0.6237623762376238,
4
+ "details": {
5
+ "optimal_distance_metric": "euclidean_distances",
6
+ "val_scores": {
7
+ "cosine_distances": {
8
+ "accuracy": 0.5725,
9
+ "accuracy_threshold": 0.6920696496963501,
10
+ "binary_f1": 0.5979670522257273,
11
+ "binary_f1_threshold": 1.0
12
+ },
13
+ "manhatten_distances": {
14
+ "accuracy": 0.6015,
15
+ "accuracy_threshold": 19.63576316833496,
16
+ "binary_f1": 0.6017636684303351,
17
+ "binary_f1_threshold": 274.46441650390625
18
+ },
19
+ "euclidean_distances": {
20
+ "accuracy": 0.602,
21
+ "accuracy_threshold": 0.9731899499893188,
22
+ "binary_f1": 0.6019760056457304,
23
+ "binary_f1_threshold": 12.281266212463379
24
+ },
25
+ "dot_similarities": {
26
+ "accuracy": 0.574,
27
+ "accuracy_threshold": 332.39276123046875,
28
+ "binary_f1": 0.6014825273561596,
29
+ "binary_f1_threshold": 263.39337158203125
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "euclidean_distances": {
34
+ "accuracy": 0.566,
35
+ "accuracy_threshold": 0.9731899499893188,
36
+ "binary_f1": 0.6237623762376238,
37
+ "binary_f1_threshold": 12.281266212463379
38
+ }
39
+ }
40
+ }
41
+ }
result/Reranking/scores_esci.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.9290942178703699,
4
+ "details": {
5
+ "optimal_distance_metric": "cosine_similarity",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "ndcg@10": 0.9419326097489188,
9
+ "ndcg@20": 0.9546274758967366,
10
+ "ndcg@40": 0.9625015652058491
11
+ },
12
+ "dot_score": {
13
+ "ndcg@10": 0.933159692803982,
14
+ "ndcg@20": 0.9482607249371672,
15
+ "ndcg@40": 0.956621759096631
16
+ },
17
+ "euclidean_distance": {
18
+ "ndcg@10": 0.9418339438093611,
19
+ "ndcg@20": 0.9547832679237122,
20
+ "ndcg@40": 0.9627457241783169
21
+ }
22
+ },
23
+ "test_scores": {
24
+ "cosine_similarity": {
25
+ "ndcg@10": 0.9290942178703699,
26
+ "ndcg@20": 0.9467035648480672,
27
+ "ndcg@40": 0.9563220304481116
28
+ }
29
+ }
30
+ }
31
+ }
result/Retrieval/scores_jagovfaqs_22k.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.7455660589538348,
4
+ "details": {
5
+ "optimal_distance_metric": "euclidean_distance",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.6042702544603685,
9
+ "accuracy@3": 0.7853173442527055,
10
+ "accuracy@5": 0.830944720678561,
11
+ "accuracy@10": 0.8821292775665399,
12
+ "ndcg@10": 0.7477862730518441,
13
+ "mrr@10": 0.7043207426287267
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.4597835624451594,
17
+ "accuracy@3": 0.6607195086282539,
18
+ "accuracy@5": 0.7282831237203861,
19
+ "accuracy@10": 0.80549868382568,
20
+ "ndcg@10": 0.630976061323317,
21
+ "mrr@10": 0.5752777429583498
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.6092424685580579,
25
+ "accuracy@3": 0.7861947937993565,
26
+ "accuracy@5": 0.8283123720386077,
27
+ "accuracy@10": 0.8780345130155016,
28
+ "ndcg@10": 0.7480985513112418,
29
+ "mrr@10": 0.7060561428432148
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "euclidean_distance": {
34
+ "accuracy@1": 0.6035087719298246,
35
+ "accuracy@3": 0.7795321637426901,
36
+ "accuracy@5": 0.8277777777777777,
37
+ "accuracy@10": 0.881578947368421,
38
+ "ndcg@10": 0.7455660589538348,
39
+ "mrr@10": 0.7017308317089019
40
+ }
41
+ }
42
+ }
43
+ }
result/Retrieval/scores_jaqket.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.5012253145754781,
4
+ "details": {
5
+ "optimal_distance_metric": "cosine_similarity",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.3407035175879397,
9
+ "accuracy@3": 0.521608040201005,
10
+ "accuracy@5": 0.6040201005025125,
11
+ "accuracy@10": 0.6894472361809045,
12
+ "ndcg@10": 0.5074962109064866,
13
+ "mrr@10": 0.44994017707585504
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.31055276381909547,
17
+ "accuracy@3": 0.507537688442211,
18
+ "accuracy@5": 0.5738693467336683,
19
+ "accuracy@10": 0.6804020100502512,
20
+ "ndcg@10": 0.48656131133927916,
21
+ "mrr@10": 0.42555116854111785
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.3055276381909548,
25
+ "accuracy@3": 0.4814070351758794,
26
+ "accuracy@5": 0.5597989949748744,
27
+ "accuracy@10": 0.6391959798994975,
28
+ "ndcg@10": 0.4655083260444005,
29
+ "mrr@10": 0.4106070032703195
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "cosine_similarity": {
34
+ "accuracy@1": 0.3159478435305918,
35
+ "accuracy@3": 0.526579739217653,
36
+ "accuracy@5": 0.60481444332999,
37
+ "accuracy@10": 0.6920762286860582,
38
+ "ndcg@10": 0.5012253145754781,
39
+ "mrr@10": 0.4404156915190016
40
+ }
41
+ }
42
+ }
43
+ }
result/Retrieval/scores_mrtydi.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.3545113073009125,
4
+ "details": {
5
+ "optimal_distance_metric": "euclidean_distance",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.22306034482758622,
9
+ "accuracy@3": 0.37176724137931033,
10
+ "accuracy@5": 0.4536637931034483,
11
+ "accuracy@10": 0.5549568965517241,
12
+ "ndcg@10": 0.37815020333355365,
13
+ "mrr@10": 0.3228995621236997
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.13793103448275862,
17
+ "accuracy@3": 0.2704741379310345,
18
+ "accuracy@5": 0.3394396551724138,
19
+ "accuracy@10": 0.4170258620689655,
20
+ "ndcg@10": 0.2698064952674162,
21
+ "mrr@10": 0.22368979200875752
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.22844827586206898,
25
+ "accuracy@3": 0.38362068965517243,
26
+ "accuracy@5": 0.4665948275862069,
27
+ "accuracy@10": 0.5668103448275862,
28
+ "ndcg@10": 0.38745306818571434,
29
+ "mrr@10": 0.33128378147235893
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "euclidean_distance": {
34
+ "accuracy@1": 0.23194444444444445,
35
+ "accuracy@3": 0.3888888888888889,
36
+ "accuracy@5": 0.46805555555555556,
37
+ "accuracy@10": 0.5708333333333333,
38
+ "ndcg@10": 0.3545113073009125,
39
+ "mrr@10": 0.3320238095238095
40
+ }
41
+ }
42
+ }
43
+ }
result/Retrieval/scores_nlp_journal_abs_intro.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.8689204088388403,
4
+ "details": {
5
+ "optimal_distance_metric": "cosine_similarity",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.85,
9
+ "accuracy@3": 0.93,
10
+ "accuracy@5": 0.93,
11
+ "accuracy@10": 0.95,
12
+ "ndcg@10": 0.9031188595062929,
13
+ "mrr@10": 0.8877777777777779
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.75,
17
+ "accuracy@3": 0.87,
18
+ "accuracy@5": 0.88,
19
+ "accuracy@10": 0.91,
20
+ "ndcg@10": 0.8329701303885662,
21
+ "mrr@10": 0.8079563492063491
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.83,
25
+ "accuracy@3": 0.92,
26
+ "accuracy@5": 0.93,
27
+ "accuracy@10": 0.94,
28
+ "ndcg@10": 0.8903171995628786,
29
+ "mrr@10": 0.87375
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "cosine_similarity": {
34
+ "accuracy@1": 0.7945544554455446,
35
+ "accuracy@3": 0.8836633663366337,
36
+ "accuracy@5": 0.9084158415841584,
37
+ "accuracy@10": 0.943069306930693,
38
+ "ndcg@10": 0.8689204088388403,
39
+ "mrr@10": 0.8452508643721514
40
+ }
41
+ }
42
+ }
43
+ }
result/Retrieval/scores_nlp_journal_title_abs.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.9656989703684407,
4
+ "details": {
5
+ "optimal_distance_metric": "cosine_similarity",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.9,
9
+ "accuracy@3": 0.96,
10
+ "accuracy@5": 0.98,
11
+ "accuracy@10": 0.99,
12
+ "ndcg@10": 0.9477320812882918,
13
+ "mrr@10": 0.9339444444444445
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.82,
17
+ "accuracy@3": 0.92,
18
+ "accuracy@5": 0.94,
19
+ "accuracy@10": 0.96,
20
+ "ndcg@10": 0.8940025955079818,
21
+ "mrr@10": 0.8724285714285713
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.89,
25
+ "accuracy@3": 0.97,
26
+ "accuracy@5": 0.98,
27
+ "accuracy@10": 0.99,
28
+ "ndcg@10": 0.9453171995628784,
29
+ "mrr@10": 0.9304166666666666
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "cosine_similarity": {
34
+ "accuracy@1": 0.9306930693069307,
35
+ "accuracy@3": 0.9777227722772277,
36
+ "accuracy@5": 0.9876237623762376,
37
+ "accuracy@10": 0.995049504950495,
38
+ "ndcg@10": 0.9656989703684407,
39
+ "mrr@10": 0.955987741631306
40
+ }
41
+ }
42
+ }
43
+ }
result/Retrieval/scores_nlp_journal_title_intro.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.7531306059721564,
4
+ "details": {
5
+ "optimal_distance_metric": "cosine_similarity",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.57,
9
+ "accuracy@3": 0.8,
10
+ "accuracy@5": 0.83,
11
+ "accuracy@10": 0.9,
12
+ "ndcg@10": 0.7448902792577736,
13
+ "mrr@10": 0.6942023809523811
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.49,
17
+ "accuracy@3": 0.68,
18
+ "accuracy@5": 0.71,
19
+ "accuracy@10": 0.83,
20
+ "ndcg@10": 0.6537395005077568,
21
+ "mrr@10": 0.5984801587301588
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.58,
25
+ "accuracy@3": 0.75,
26
+ "accuracy@5": 0.85,
27
+ "accuracy@10": 0.9,
28
+ "ndcg@10": 0.7411266935263704,
29
+ "mrr@10": 0.6896904761904763
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "cosine_similarity": {
34
+ "accuracy@1": 0.6237623762376238,
35
+ "accuracy@3": 0.7896039603960396,
36
+ "accuracy@5": 0.8242574257425742,
37
+ "accuracy@10": 0.8811881188118812,
38
+ "ndcg@10": 0.7531306059721564,
39
+ "mrr@10": 0.7120059327361306
40
+ }
41
+ }
42
+ }
43
+ }
result/STS/scores_jsick.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "spearman",
3
+ "metric_value": 0.8231772134744029,
4
+ "details": {
5
+ "optimal_similarity_metric": "cosine_similarity",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "pearson": 0.8390312744889947,
9
+ "spearman": 0.8309726355825223
10
+ },
11
+ "manhatten_distance": {
12
+ "pearson": 0.8439757378089565,
13
+ "spearman": 0.8296746939532708
14
+ },
15
+ "euclidean_distance": {
16
+ "pearson": 0.8439757378089565,
17
+ "spearman": 0.8296746939532708
18
+ },
19
+ "dot_score": {
20
+ "pearson": 0.8235943624962084,
21
+ "spearman": 0.8066842966908715
22
+ }
23
+ },
24
+ "test_scores": {
25
+ "cosine_similarity": {
26
+ "pearson": 0.8323321086750828,
27
+ "spearman": 0.8231772134744029
28
+ }
29
+ }
30
+ }
31
+ }
result/STS/scores_jsts.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "spearman",
3
+ "metric_value": 0.8342848039994751,
4
+ "details": {
5
+ "optimal_similarity_metric": "manhatten_distance",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "pearson": 0.8402004412140045,
9
+ "spearman": 0.7947630577888891
10
+ },
11
+ "manhatten_distance": {
12
+ "pearson": 0.8359705278620446,
13
+ "spearman": 0.7954996671020325
14
+ },
15
+ "euclidean_distance": {
16
+ "pearson": 0.8359705278620446,
17
+ "spearman": 0.7954996671020325
18
+ },
19
+ "dot_score": {
20
+ "pearson": 0.8146522053769387,
21
+ "spearman": 0.7576805023715597
22
+ }
23
+ },
24
+ "test_scores": {
25
+ "manhatten_distance": {
26
+ "pearson": 0.8665411120423515,
27
+ "spearman": 0.8342848039994751
28
+ }
29
+ }
30
+ }
31
+ }
result/summary.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "Classification": {
3
+ "amazon_counterfactual_classification": {
4
+ "macro_f1": 0.7665550732749669
5
+ },
6
+ "amazon_review_classification": {
7
+ "macro_f1": 0.5575876111411316
8
+ },
9
+ "massive_intent_classification": {
10
+ "macro_f1": 0.8141210121425055
11
+ },
12
+ "massive_scenario_classification": {
13
+ "macro_f1": 0.8848812917656395
14
+ }
15
+ },
16
+ "Reranking": {
17
+ "esci": {
18
+ "ndcg@10": 0.9290942178703699
19
+ }
20
+ },
21
+ "Retrieval": {
22
+ "jagovfaqs_22k": {
23
+ "ndcg@10": 0.7455660589538348
24
+ },
25
+ "jaqket": {
26
+ "ndcg@10": 0.5012253145754781
27
+ },
28
+ "mrtydi": {
29
+ "ndcg@10": 0.3545113073009125
30
+ },
31
+ "nlp_journal_abs_intro": {
32
+ "ndcg@10": 0.8689204088388403
33
+ },
34
+ "nlp_journal_title_abs": {
35
+ "ndcg@10": 0.9656989703684407
36
+ },
37
+ "nlp_journal_title_intro": {
38
+ "ndcg@10": 0.7531306059721564
39
+ }
40
+ },
41
+ "STS": {
42
+ "jsick": {
43
+ "spearman": 0.8231772134744029
44
+ },
45
+ "jsts": {
46
+ "spearman": 0.8342848039994751
47
+ }
48
+ },
49
+ "Clustering": {
50
+ "livedoor_news": {
51
+ "v_measure_score": 0.5427223607801758
52
+ },
53
+ "mewsc16": {
54
+ "v_measure_score": 0.5404099864321413
55
+ }
56
+ },
57
+ "PairClassification": {
58
+ "paws_x_ja": {
59
+ "binary_f1": 0.6237623762376238
60
+ }
61
+ }
62
+ }