--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer - sentiment_analysis datasets: - ckandemir/bitcoin_tweets_sentiment_kaggle metrics: - accuracy - f1 model-index: - name: bitcoin_tweet_sentiment_classification results: - task: name: Text Classification type: text-classification dataset: name: ckandemir/bitcoin_tweets_sentiment_kaggle type: ckandemir/bitcoin_tweets_sentiment_kaggle metrics: - name: Accuracy type: accuracy value: 0.7150837988826816 - name: F1 type: f1 value: 0.7212944928862212 language: - en library_name: transformers widget: - text: Sold all btc, tethered up before the correction. pipeline_tag: token-classification --- # bitcoin_tweet_sentiment_classification This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the ckandemir/bitcoin_tweets_sentiment_kaggle dataset. It achieves the following results on the evaluation set: - Loss: 0.4542 - Accuracy: 0.7151 - F1: 0.7213 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 72 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 1000 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8941 | 0.65 | 50 | 0.8733 | 0.5698 | 0.5654 | | 0.8565 | 1.3 | 100 | 0.8042 | 0.6690 | 0.6031 | | 0.7896 | 1.96 | 150 | 0.7219 | 0.6802 | 0.5740 | | 0.7174 | 2.61 | 200 | 0.6379 | 0.7514 | 0.6955 | | 0.633 | 3.26 | 250 | 0.5745 | 0.7514 | 0.6930 | | 0.5824 | 3.91 | 300 | 0.5303 | 0.75 | 0.6919 | | 0.5365 | 4.57 | 350 | 0.4997 | 0.7514 | 0.7014 | | 0.5089 | 5.22 | 400 | 0.4766 | 0.7458 | 0.6991 | | 0.4893 | 5.87 | 450 | 0.4596 | 0.7486 | 0.7174 | | 0.463 | 6.52 | 500 | 0.4446 | 0.7514 | 0.7127 | | 0.4496 | 7.17 | 550 | 0.4407 | 0.7165 | 0.7048 | | 0.4357 | 7.83 | 600 | 0.4364 | 0.7277 | 0.7246 | | 0.4257 | 8.48 | 650 | 0.4324 | 0.7067 | 0.7115 | | 0.4029 | 9.13 | 700 | 0.4314 | 0.7277 | 0.7180 | | 0.3955 | 9.78 | 750 | 0.4354 | 0.7151 | 0.7164 | | 0.3886 | 10.43 | 800 | 0.4396 | 0.7221 | 0.7244 | | 0.3788 | 11.09 | 850 | 0.4363 | 0.7235 | 0.7194 | | 0.366 | 11.74 | 900 | 0.4528 | 0.7179 | 0.7215 | | 0.3298 | 12.39 | 950 | 0.4766 | 0.7053 | 0.7107 | | 0.3423 | 13.04 | 1000 | 0.4542 | 0.7151 | 0.7213 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1