--- base_model: unsloth/gemma-2-2b-it-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - gemma2 - trl - sft datasets: - Clinton/Text-to-sql-v1 --- # Uploaded model - **Developed by:** circlelee - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-2-2b-it-bnb-4bit This gemma2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth) ## Model Information Summary description and brief definition of inputs and outputs. ### Description This model is based on Gemma2 and is fine-tuned to generate SQL from Natural Language. ### Usage Below we share some code snippets on how to get quickly started with running the model. First, install the Transformers library with: ```sh pip install -U transformers ... from transformers import AutoTokenizer, AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("circlelee/gemma-2-2b-it-nl2sql") tokenizer = AutoTokenizer.from_pretrained("circlelee/gemma-2-2b-it-nl2sql", trust_remote_code=True) table_schemas = "CREATE TABLE person ( name VARCHAR, age INTEGER, address VARCHAR )" user_query = "people whoes ages are older than 27 and name starts with letter 'k'" messages = [ {"role": "user", "content": f"""Use the below SQL tables schemas paired with instruction that describes a task. make SQL query that appropriately completes the request for the provided tables. And make SQL query according the steps. {table_schemas} step 1. check columns that I want. step 2. check condition that I want. step 3. make SQL query to get every information that I want. {user_query} """} ] formated_messages = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, return_tensors="pt") input_ids = tokenizer(formated_messages, return_tensors="pt") outputs = model.generate(**input_ids, max_new_tokens=64) print(tokenizer.decode(outputs[0])) ```