--- tags: - pytorch_model_hub_mixin - model_hub_mixin datasets: - chuonghm/MaGGIe-HIM metrics: - mse - sad - mad - conn - grad pipeline_tag: image-segmentation license: cc-by-4.0 --- # MaGGIe: Mask Guided Gradual Human Instance Matting [[Project Page](https://maggie-matt.github.io/)] [[Code](https://github.com/hmchuong/MaGGIe)] *Weights for Instance-awareness alpha human matting with binary mask guidance for images and video* **Accepted at CVPR 2024** **[Chuong Huynh](https://hmchuong.github.io/), [Seoung Wug Oh](https://sites.google.com/view/seoungwugoh/), [Abhinav Shrivastava](https://www.cs.umd.edu/~abhinav/), [Joon-Young Lee](https://joonyoung-cv.github.io/)** Work is a part of Summer Internship 2023 at [Adobe Research](https://research.adobe.com/) ## Citation If you find MaGGIe useful in your research, please cite the following paper: ```latex @article{chuonghm_maggie, author = {Chuong Huynh and Seoung Wug Oh and and Abhinav Shrivastava and Joon-Young Lee}, title = {MaGGIe: Masked Guided Gradual Human Instance Matting}, journal = {arXiv:2404.16035}, year = {2024} } ```