--- license: apache-2.0 library_name: peft tags: - generated_from_trainer metrics: - accuracy base_model: mistralai/Mistral-7B-v0.1 model-index: - name: Mistral-PromptTuning-Weights-Binary-Hate-Speech-Detection results: [] --- # Mistral-PromptTuning-Weights-Binary-Hate-Speech-Detection This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4243 - Micro F1: 0.8033 - Macro F1: 0.7028 - Accuracy: 0.8033 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.36.1 - Pytorch 2.1.0+cu121 - Datasets 2.13.1 - Tokenizers 0.15.0 ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.2