language: fon datasets: - [Fon Dataset](https://github.com/laleye/pyFongbe/tree/master/data) metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Fon XLSR Wav2Vec2 Large 53 results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: - name: fon - type: fon_dataset - args: fon metrics: - name: Test WER - type: wer - value: 14.97 --- # Wav2Vec2-Large-XLSR-53-Fon Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on [Fon (or Fongbe)](https://en.wikipedia.org/wiki/Fon_language) using the [Fon Dataset](https://github.com/laleye/pyFongbe/tree/master/data). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import json import random import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor #This will download the files from Layele's Github to the directory FonAudio if not os.path.isdir("./FonAudio"): !wget https://github.com/laleye/pyFongbe/archive/master/data.zip with zipfile.ZipFile("data.zip","r") as zip_ref: zip_ref.extractall("./FonAudio") with open('./FonAudio/pyFongbe-master/data/train.csv', newline='',encoding='UTF-8') as f: reader = csv.reader(f) data = list(reader) train_data = [data[i] for i in range(len(data)) if i!=0] with open('./FonAudio/pyFongbe-master/data/test.csv', newline='',encoding='UTF-8') as f: reader = csv.reader(f) data = list(reader) t_data = [data[i] for i in range(len(data)) if i!=0] #Get valid indices random.seed(42) #this seed was used specifically to compare # with Okwugbe model (https://arxiv.org/abs/2103.07762) v = 1500 test_list = [i for i in range(len(t_data))] valid_indices = random.choices(test_list, k=v) test_data = [t_data[i] for i in range(len(t_data)) if i not in valid_indices] valid_data = [t_data[i] for i in range(len(t_data)) if i in valid_indices] #Final length of validation_dataset -> 1107 #Final length of test_dataset -> 1061 #Please note, the final validation size is is smaller than the #expected (1500) because we used random.choices which could contain duplicates. #Create JSON files def create_json_file(d): utterance = d[2] wav_path =d[0] wav_path = wav_path.replace("/home/frejus/Projects/Fongbe_ASR/pyFongbe","./FonAudio/pyFongbe-master") return { "path": wav_path, "sentence": utterance } train_json = [create_json_file(i) for i in train_data] test_json = [create_json_file(i) for i in test_data] valid_json = [create_json_file(i) for i in valid_data] #Save JSON files to your Google Drive folders #Make folder in GDrive to store files train_path = '/content/drive/MyDrive/fon_xlsr/train' test_path = '/content/drive/MyDrive/fon_xlsr/test' valid_path = '/content/drive/MyDrive/fon_xlsr/valid' if not os.path.isdir(train_path): print("Creating paths") os.makedirs(train_path) os.makedirs(test_path) #this is where we save the test files os.makedirs(valid_path) #for train for i, sample in enumerate(train_json): file_path = os.path.join(train_path,'train_fon_{}.json'.format(i)) with open(file_path, 'w') as outfile: json.dump(sample, outfile) #for test for i, sample in enumerate(test_json): file_path = os.path.join(test_path,'test_fon_{}.json'.format(i)) with open(file_path, 'w') as outfile: json.dump(sample, outfile) #for valid for i, sample in enumerate(valid_json): file_path = os.path.join(valid_path,'valid_fon_{}.json'.format(i)) with open(file_path, 'w') as outfile: json.dump(sample, outfile) #Load test_dataset from saved files in folder from datasets import load_dataset, load_metric #for test for root, dirs, files in os.walk(test_path): test_dataset= load_dataset("json", data_files=[os.path.join(root,i) for i in files],split="train") #Remove unnecessary chars chars_to_ignore_regex = def remove_special_characters(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " " return batch test_dataset = test_dataset.map(remove_special_characters) processor = Wav2Vec2Processor.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon") model = Wav2Vec2ForCTC.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon") #No need for resampling because audio dataset already at 16kHz #resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"]=speech_array.squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on our unique Fon test data. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re for root, dirs, files in os.walk(test_path): test_dataset = load_dataset("json", data_files=[os.path.join(root,i) for i in files],split="train") chars_to_ignore_regex = batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " " return batch test_dataset = test_dataset.map(remove_special_characters) wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon") model = Wav2Vec2ForCTC.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon") #use checkpoint-12400 to get our WER test results model.to("cuda") # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = speech_array[0].numpy() batch["sampling_rate"] = sampling_rate batch["target_text"] = batch["sentence"] return batch test_dataset = test_dataset.map(speech_file_to_array_fn) #Evaluation on test dataset def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 14.97 % ## Training The [Fon dataset](https://github.com/laleye/pyFongbe/tree/master/data) was split into `train`(8235 samples), `validation`(1107 samples), and `test`(1061 samples). The script used for training can be found [here](https://colab.research.google.com/drive/11l6qhJCYnPTG1TQZ8f3EvKB9z12TQi4g?usp=sharing) # Collaborators on this project - Chris C. Emezue ([Twitter](https://twitter.com/ChrisEmezue)) - Bonaventure F.P. Dossou ([Twitter](https://twitter.com/bonadossou)) ## This is a joint project continuing our research on [OkwuGbé: End-to-End Speech Recognition for Fon and Igbo](https://arxiv.org/abs/2103.07762) Please contact `chris.emezue@gmail.com` for any issues or questions.