--- language: - en license: cc-by-2.0 tags: - finance - legal - biology - art model-index: - name: SatoshiNv5 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 60.49 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=chrischain/SatoshiNv5 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 82.94 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=chrischain/SatoshiNv5 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.42 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=chrischain/SatoshiNv5 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 41.8 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=chrischain/SatoshiNv5 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 78.69 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=chrischain/SatoshiNv5 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 34.72 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=chrischain/SatoshiNv5 name: Open LLM Leaderboard --- Behold, one of the first fine-tunes of Mistral's 7B 0.2 Base model. SatoshiN is trained on 4 epochs 2e-4 learning rate (cosine) of a diverse custom data-set, combined with a polishing round of that same data-set at a 1e-4 linear learning rate. It's a nice assistant that isn't afraid to ask questions, and gather additional information before providing a response to user prompts. SatoshiN | Base-Model Wikitext Perplexity: 6.27 | 5.4 **Similar to SOTA, this model runs a bit hot, try using lower temperatures below .5 if experiencing any nonsense) # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_chrischain__SatoshiNv5) | Metric |Value| |---------------------------------|----:| |Avg. |60.34| |AI2 Reasoning Challenge (25-Shot)|60.49| |HellaSwag (10-Shot) |82.94| |MMLU (5-Shot) |63.42| |TruthfulQA (0-shot) |41.80| |Winogrande (5-shot) |78.69| |GSM8k (5-shot) |34.72|