chribark commited on
Commit
7caa6d3
1 Parent(s): 00090f9

Training in progress epoch 0

Browse files
Files changed (3) hide show
  1. README.md +25 -310
  2. config.json +12 -296
  3. tf_model.h5 +2 -2
README.md CHANGED
@@ -15,312 +15,28 @@ probably proofread and complete it, then remove this comment. -->
15
 
16
  This model is a fine-tuned version of [nvidia/segformer-b3-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b3-finetuned-ade-512-512) on an unknown dataset.
17
  It achieves the following results on the evaluation set:
18
- - Train Loss: 0.4398
19
- - Validation Loss: 0.4008
20
- - Validation Mean Iou: 0.0000
21
- - Validation Mean Accuracy: 0.0000
22
- - Validation Overall Accuracy: 0.0000
23
- - Validation Accuracy Wall: 0.0001
24
- - Validation Accuracy Building: nan
25
- - Validation Accuracy Sky: nan
26
- - Validation Accuracy Floor: 0.0
27
- - Validation Accuracy Tree: nan
28
- - Validation Accuracy Ceiling: 0.0
29
- - Validation Accuracy Road: nan
30
- - Validation Accuracy Bed : nan
31
- - Validation Accuracy Windowpane: nan
32
- - Validation Accuracy Grass: nan
33
- - Validation Accuracy Cabinet: nan
34
- - Validation Accuracy Sidewalk: 0.0
35
- - Validation Accuracy Person: nan
36
- - Validation Accuracy Earth: nan
37
- - Validation Accuracy Door: nan
38
- - Validation Accuracy Table: nan
39
- - Validation Accuracy Mountain: nan
40
- - Validation Accuracy Plant: nan
41
- - Validation Accuracy Curtain: nan
42
- - Validation Accuracy Chair: 0.0
43
- - Validation Accuracy Car: nan
44
- - Validation Accuracy Water: nan
45
- - Validation Accuracy Painting: nan
46
- - Validation Accuracy Sofa: nan
47
- - Validation Accuracy Shelf: nan
48
- - Validation Accuracy House: nan
49
- - Validation Accuracy Sea: nan
50
- - Validation Accuracy Mirror: nan
51
- - Validation Accuracy Rug: nan
52
- - Validation Accuracy Field: nan
53
- - Validation Accuracy Armchair: nan
54
- - Validation Accuracy Seat: nan
55
- - Validation Accuracy Fence: nan
56
- - Validation Accuracy Desk: nan
57
- - Validation Accuracy Rock: nan
58
- - Validation Accuracy Wardrobe: nan
59
- - Validation Accuracy Lamp: nan
60
- - Validation Accuracy Bathtub: nan
61
- - Validation Accuracy Railing: nan
62
- - Validation Accuracy Cushion: nan
63
- - Validation Accuracy Base: nan
64
- - Validation Accuracy Box: nan
65
- - Validation Accuracy Column: nan
66
- - Validation Accuracy Signboard: nan
67
- - Validation Accuracy Chest of drawers: nan
68
- - Validation Accuracy Counter: nan
69
- - Validation Accuracy Sand: nan
70
- - Validation Accuracy Sink: nan
71
- - Validation Accuracy Skyscraper: nan
72
- - Validation Accuracy Fireplace: nan
73
- - Validation Accuracy Refrigerator: nan
74
- - Validation Accuracy Grandstand: nan
75
- - Validation Accuracy Path: nan
76
- - Validation Accuracy Stairs: nan
77
- - Validation Accuracy Runway: nan
78
- - Validation Accuracy Case: nan
79
- - Validation Accuracy Pool table: nan
80
- - Validation Accuracy Pillow: nan
81
- - Validation Accuracy Screen door: nan
82
- - Validation Accuracy Stairway: nan
83
- - Validation Accuracy River: nan
84
- - Validation Accuracy Bridge: nan
85
- - Validation Accuracy Bookcase: nan
86
- - Validation Accuracy Blind: nan
87
- - Validation Accuracy Coffee table: nan
88
- - Validation Accuracy Toilet: nan
89
- - Validation Accuracy Flower: nan
90
- - Validation Accuracy Book: nan
91
- - Validation Accuracy Hill: nan
92
- - Validation Accuracy Bench: nan
93
- - Validation Accuracy Countertop: nan
94
- - Validation Accuracy Stove: nan
95
- - Validation Accuracy Palm: nan
96
- - Validation Accuracy Kitchen island: nan
97
- - Validation Accuracy Computer: nan
98
- - Validation Accuracy Swivel chair: nan
99
- - Validation Accuracy Boat: nan
100
- - Validation Accuracy Bar: nan
101
- - Validation Accuracy Arcade machine: nan
102
- - Validation Accuracy Hovel: nan
103
- - Validation Accuracy Bus: nan
104
- - Validation Accuracy Towel: nan
105
- - Validation Accuracy Light: nan
106
- - Validation Accuracy Truck: nan
107
- - Validation Accuracy Tower: nan
108
- - Validation Accuracy Chandelier: nan
109
- - Validation Accuracy Awning: nan
110
- - Validation Accuracy Streetlight: nan
111
- - Validation Accuracy Booth: nan
112
- - Validation Accuracy Television receiver: nan
113
- - Validation Accuracy Airplane: nan
114
- - Validation Accuracy Dirt track: nan
115
- - Validation Accuracy Apparel: nan
116
- - Validation Accuracy Pole: nan
117
- - Validation Accuracy Land: nan
118
- - Validation Accuracy Bannister: nan
119
- - Validation Accuracy Escalator: nan
120
- - Validation Accuracy Ottoman: nan
121
- - Validation Accuracy Bottle: nan
122
- - Validation Accuracy Buffet: nan
123
- - Validation Accuracy Poster: nan
124
- - Validation Accuracy Stage: nan
125
- - Validation Accuracy Van: nan
126
- - Validation Accuracy Ship: nan
127
- - Validation Accuracy Fountain: nan
128
- - Validation Accuracy Conveyer belt: nan
129
- - Validation Accuracy Canopy: nan
130
- - Validation Accuracy Washer: nan
131
- - Validation Accuracy Plaything: nan
132
- - Validation Accuracy Swimming pool: nan
133
- - Validation Accuracy Stool: nan
134
- - Validation Accuracy Barrel: nan
135
- - Validation Accuracy Basket: nan
136
- - Validation Accuracy Waterfall: nan
137
- - Validation Accuracy Tent: nan
138
- - Validation Accuracy Bag: nan
139
- - Validation Accuracy Minibike: nan
140
- - Validation Accuracy Cradle: nan
141
- - Validation Accuracy Oven: nan
142
- - Validation Accuracy Ball: nan
143
- - Validation Accuracy Food: nan
144
- - Validation Accuracy Step: nan
145
- - Validation Accuracy Tank: nan
146
- - Validation Accuracy Trade name: nan
147
- - Validation Accuracy Microwave: nan
148
- - Validation Accuracy Pot: nan
149
- - Validation Accuracy Animal: nan
150
- - Validation Accuracy Bicycle: nan
151
- - Validation Accuracy Lake: nan
152
- - Validation Accuracy Dishwasher: nan
153
- - Validation Accuracy Screen: nan
154
- - Validation Accuracy Blanket: nan
155
- - Validation Accuracy Sculpture: nan
156
- - Validation Accuracy Hood: nan
157
- - Validation Accuracy Sconce: nan
158
- - Validation Accuracy Vase: nan
159
- - Validation Accuracy Traffic light: nan
160
- - Validation Accuracy Tray: nan
161
- - Validation Accuracy Ashcan: nan
162
- - Validation Accuracy Fan: nan
163
- - Validation Accuracy Pier: nan
164
- - Validation Accuracy Crt screen: nan
165
- - Validation Accuracy Plate: nan
166
- - Validation Accuracy Monitor: nan
167
- - Validation Accuracy Bulletin board: nan
168
- - Validation Accuracy Shower: nan
169
- - Validation Accuracy Radiator: nan
170
- - Validation Accuracy Glass: nan
171
- - Validation Accuracy Clock: nan
172
- - Validation Accuracy Flag: nan
173
- - Validation Iou Wall: 0.0001
174
- - Validation Iou Building: 0.0
175
- - Validation Iou Sky: 0.0
176
- - Validation Iou Floor: 0.0
177
- - Validation Iou Tree: 0.0
178
- - Validation Iou Ceiling: 0.0
179
- - Validation Iou Road: 0.0
180
- - Validation Iou Bed : nan
181
- - Validation Iou Windowpane: nan
182
- - Validation Iou Grass: nan
183
- - Validation Iou Cabinet: nan
184
- - Validation Iou Sidewalk: 0.0
185
- - Validation Iou Person: 0.0
186
- - Validation Iou Earth: nan
187
- - Validation Iou Door: nan
188
- - Validation Iou Table: nan
189
- - Validation Iou Mountain: nan
190
- - Validation Iou Plant: 0.0
191
- - Validation Iou Curtain: nan
192
- - Validation Iou Chair: 0.0
193
- - Validation Iou Car: 0.0
194
- - Validation Iou Water: nan
195
- - Validation Iou Painting: nan
196
- - Validation Iou Sofa: nan
197
- - Validation Iou Shelf: nan
198
- - Validation Iou House: nan
199
- - Validation Iou Sea: nan
200
- - Validation Iou Mirror: nan
201
- - Validation Iou Rug: nan
202
- - Validation Iou Field: nan
203
- - Validation Iou Armchair: nan
204
- - Validation Iou Seat: nan
205
- - Validation Iou Fence: nan
206
- - Validation Iou Desk: nan
207
- - Validation Iou Rock: nan
208
- - Validation Iou Wardrobe: nan
209
- - Validation Iou Lamp: nan
210
- - Validation Iou Bathtub: nan
211
- - Validation Iou Railing: nan
212
- - Validation Iou Cushion: nan
213
- - Validation Iou Base: nan
214
- - Validation Iou Box: nan
215
- - Validation Iou Column: nan
216
- - Validation Iou Signboard: 0.0
217
- - Validation Iou Chest of drawers: nan
218
- - Validation Iou Counter: nan
219
- - Validation Iou Sand: nan
220
- - Validation Iou Sink: nan
221
- - Validation Iou Skyscraper: nan
222
- - Validation Iou Fireplace: nan
223
- - Validation Iou Refrigerator: nan
224
- - Validation Iou Grandstand: nan
225
- - Validation Iou Path: nan
226
- - Validation Iou Stairs: nan
227
- - Validation Iou Runway: nan
228
- - Validation Iou Case: nan
229
- - Validation Iou Pool table: nan
230
- - Validation Iou Pillow: nan
231
- - Validation Iou Screen door: nan
232
- - Validation Iou Stairway: nan
233
- - Validation Iou River: nan
234
- - Validation Iou Bridge: nan
235
- - Validation Iou Bookcase: nan
236
- - Validation Iou Blind: nan
237
- - Validation Iou Coffee table: nan
238
- - Validation Iou Toilet: nan
239
- - Validation Iou Flower: nan
240
- - Validation Iou Book: nan
241
- - Validation Iou Hill: nan
242
- - Validation Iou Bench: nan
243
- - Validation Iou Countertop: nan
244
- - Validation Iou Stove: nan
245
- - Validation Iou Palm: nan
246
- - Validation Iou Kitchen island: nan
247
- - Validation Iou Computer: nan
248
- - Validation Iou Swivel chair: nan
249
- - Validation Iou Boat: nan
250
- - Validation Iou Bar: nan
251
- - Validation Iou Arcade machine: nan
252
- - Validation Iou Hovel: nan
253
- - Validation Iou Bus: nan
254
- - Validation Iou Towel: nan
255
- - Validation Iou Light: nan
256
- - Validation Iou Truck: nan
257
- - Validation Iou Tower: nan
258
- - Validation Iou Chandelier: nan
259
- - Validation Iou Awning: nan
260
- - Validation Iou Streetlight: nan
261
- - Validation Iou Booth: nan
262
- - Validation Iou Television receiver: nan
263
- - Validation Iou Airplane: nan
264
- - Validation Iou Dirt track: nan
265
- - Validation Iou Apparel: nan
266
- - Validation Iou Pole: nan
267
- - Validation Iou Land: nan
268
- - Validation Iou Bannister: nan
269
- - Validation Iou Escalator: nan
270
- - Validation Iou Ottoman: nan
271
- - Validation Iou Bottle: nan
272
- - Validation Iou Buffet: nan
273
- - Validation Iou Poster: nan
274
- - Validation Iou Stage: nan
275
- - Validation Iou Van: nan
276
- - Validation Iou Ship: nan
277
- - Validation Iou Fountain: nan
278
- - Validation Iou Conveyer belt: nan
279
- - Validation Iou Canopy: nan
280
- - Validation Iou Washer: nan
281
- - Validation Iou Plaything: nan
282
- - Validation Iou Swimming pool: nan
283
- - Validation Iou Stool: nan
284
- - Validation Iou Barrel: nan
285
- - Validation Iou Basket: nan
286
- - Validation Iou Waterfall: nan
287
- - Validation Iou Tent: nan
288
- - Validation Iou Bag: nan
289
- - Validation Iou Minibike: nan
290
- - Validation Iou Cradle: nan
291
- - Validation Iou Oven: nan
292
- - Validation Iou Ball: nan
293
- - Validation Iou Food: nan
294
- - Validation Iou Step: nan
295
- - Validation Iou Tank: nan
296
- - Validation Iou Trade name: nan
297
- - Validation Iou Microwave: nan
298
- - Validation Iou Pot: nan
299
- - Validation Iou Animal: nan
300
- - Validation Iou Bicycle: nan
301
- - Validation Iou Lake: nan
302
- - Validation Iou Dishwasher: nan
303
- - Validation Iou Screen: nan
304
- - Validation Iou Blanket: nan
305
- - Validation Iou Sculpture: nan
306
- - Validation Iou Hood: nan
307
- - Validation Iou Sconce: nan
308
- - Validation Iou Vase: nan
309
- - Validation Iou Traffic light: nan
310
- - Validation Iou Tray: nan
311
- - Validation Iou Ashcan: nan
312
- - Validation Iou Fan: nan
313
- - Validation Iou Pier: nan
314
- - Validation Iou Crt screen: nan
315
- - Validation Iou Plate: nan
316
- - Validation Iou Monitor: nan
317
- - Validation Iou Bulletin board: nan
318
- - Validation Iou Shower: nan
319
- - Validation Iou Radiator: nan
320
- - Validation Iou Glass: nan
321
- - Validation Iou Clock: nan
322
- - Validation Iou Flag: nan
323
- - Epoch: 1
324
 
325
  ## Model description
326
 
@@ -344,10 +60,9 @@ The following hyperparameters were used during training:
344
 
345
  ### Training results
346
 
347
- | Train Loss | Validation Loss | Validation Mean Iou | Validation Mean Accuracy | Validation Overall Accuracy | Validation Accuracy Wall | Validation Accuracy Building | Validation Accuracy Sky | Validation Accuracy Floor | Validation Accuracy Tree | Validation Accuracy Ceiling | Validation Accuracy Road | Validation Accuracy Bed | Validation Accuracy Windowpane | Validation Accuracy Grass | Validation Accuracy Cabinet | Validation Accuracy Sidewalk | Validation Accuracy Person | Validation Accuracy Earth | Validation Accuracy Door | Validation Accuracy Table | Validation Accuracy Mountain | Validation Accuracy Plant | Validation Accuracy Curtain | Validation Accuracy Chair | Validation Accuracy Car | Validation Accuracy Water | Validation Accuracy Painting | Validation Accuracy Sofa | Validation Accuracy Shelf | Validation Accuracy House | Validation Accuracy Sea | Validation Accuracy Mirror | Validation Accuracy Rug | Validation Accuracy Field | Validation Accuracy Armchair | Validation Accuracy Seat | Validation Accuracy Fence | Validation Accuracy Desk | Validation Accuracy Rock | Validation Accuracy Wardrobe | Validation Accuracy Lamp | Validation Accuracy Bathtub | Validation Accuracy Railing | Validation Accuracy Cushion | Validation Accuracy Base | Validation Accuracy Box | Validation Accuracy Column | Validation Accuracy Signboard | Validation Accuracy Chest of drawers | Validation Accuracy Counter | Validation Accuracy Sand | Validation Accuracy Sink | Validation Accuracy Skyscraper | Validation Accuracy Fireplace | Validation Accuracy Refrigerator | Validation Accuracy Grandstand | Validation Accuracy Path | Validation Accuracy Stairs | Validation Accuracy Runway | Validation Accuracy Case | Validation Accuracy Pool table | Validation Accuracy Pillow | Validation Accuracy Screen door | Validation Accuracy Stairway | Validation Accuracy River | Validation Accuracy Bridge | Validation Accuracy Bookcase | Validation Accuracy Blind | Validation Accuracy Coffee table | Validation Accuracy Toilet | Validation Accuracy Flower | Validation Accuracy Book | Validation Accuracy Hill | Validation Accuracy Bench | Validation Accuracy Countertop | Validation Accuracy Stove | Validation Accuracy Palm | Validation Accuracy Kitchen island | Validation Accuracy Computer | Validation Accuracy Swivel chair | Validation Accuracy Boat | Validation Accuracy Bar | Validation Accuracy Arcade machine | Validation Accuracy Hovel | Validation Accuracy Bus | Validation Accuracy Towel | Validation Accuracy Light | Validation Accuracy Truck | Validation Accuracy Tower | Validation Accuracy Chandelier | Validation Accuracy Awning | Validation Accuracy Streetlight | Validation Accuracy Booth | Validation Accuracy Television receiver | Validation Accuracy Airplane | Validation Accuracy Dirt track | Validation Accuracy Apparel | Validation Accuracy Pole | Validation Accuracy Land | Validation Accuracy Bannister | Validation Accuracy Escalator | Validation Accuracy Ottoman | Validation Accuracy Bottle | Validation Accuracy Buffet | Validation Accuracy Poster | Validation Accuracy Stage | Validation Accuracy Van | Validation Accuracy Ship | Validation Accuracy Fountain | Validation Accuracy Conveyer belt | Validation Accuracy Canopy | Validation Accuracy Washer | Validation Accuracy Plaything | Validation Accuracy Swimming pool | Validation Accuracy Stool | Validation Accuracy Barrel | Validation Accuracy Basket | Validation Accuracy Waterfall | Validation Accuracy Tent | Validation Accuracy Bag | Validation Accuracy Minibike | Validation Accuracy Cradle | Validation Accuracy Oven | Validation Accuracy Ball | Validation Accuracy Food | Validation Accuracy Step | Validation Accuracy Tank | Validation Accuracy Trade name | Validation Accuracy Microwave | Validation Accuracy Pot | Validation Accuracy Animal | Validation Accuracy Bicycle | Validation Accuracy Lake | Validation Accuracy Dishwasher | Validation Accuracy Screen | Validation Accuracy Blanket | Validation Accuracy Sculpture | Validation Accuracy Hood | Validation Accuracy Sconce | Validation Accuracy Vase | Validation Accuracy Traffic light | Validation Accuracy Tray | Validation Accuracy Ashcan | Validation Accuracy Fan | Validation Accuracy Pier | Validation Accuracy Crt screen | Validation Accuracy Plate | Validation Accuracy Monitor | Validation Accuracy Bulletin board | Validation Accuracy Shower | Validation Accuracy Radiator | Validation Accuracy Glass | Validation Accuracy Clock | Validation Accuracy Flag | Validation Iou Wall | Validation Iou Building | Validation Iou Sky | Validation Iou Floor | Validation Iou Tree | Validation Iou Ceiling | Validation Iou Road | Validation Iou Bed | Validation Iou Windowpane | Validation Iou Grass | Validation Iou Cabinet | Validation Iou Sidewalk | Validation Iou Person | Validation Iou Earth | Validation Iou Door | Validation Iou Table | Validation Iou Mountain | Validation Iou Plant | Validation Iou Curtain | Validation Iou Chair | Validation Iou Car | Validation Iou Water | Validation Iou Painting | Validation Iou Sofa | Validation Iou Shelf | Validation Iou House | Validation Iou Sea | Validation Iou Mirror | Validation Iou Rug | Validation Iou Field | Validation Iou Armchair | Validation Iou Seat | Validation Iou Fence | Validation Iou Desk | Validation Iou Rock | Validation Iou Wardrobe | Validation Iou Lamp | Validation Iou Bathtub | Validation Iou Railing | Validation Iou Cushion | Validation Iou Base | Validation Iou Box | Validation Iou Column | Validation Iou Signboard | Validation Iou Chest of drawers | Validation Iou Counter | Validation Iou Sand | Validation Iou Sink | Validation Iou Skyscraper | Validation Iou Fireplace | Validation Iou Refrigerator | Validation Iou Grandstand | Validation Iou Path | Validation Iou Stairs | Validation Iou Runway | Validation Iou Case | Validation Iou Pool table | Validation Iou Pillow | Validation Iou Screen door | Validation Iou Stairway | Validation Iou River | Validation Iou Bridge | Validation Iou Bookcase | Validation Iou Blind | Validation Iou Coffee table | Validation Iou Toilet | Validation Iou Flower | Validation Iou Book | Validation Iou Hill | Validation Iou Bench | Validation Iou Countertop | Validation Iou Stove | Validation Iou Palm | Validation Iou Kitchen island | Validation Iou Computer | Validation Iou Swivel chair | Validation Iou Boat | Validation Iou Bar | Validation Iou Arcade machine | Validation Iou Hovel | Validation Iou Bus | Validation Iou Towel | Validation Iou Light | Validation Iou Truck | Validation Iou Tower | Validation Iou Chandelier | Validation Iou Awning | Validation Iou Streetlight | Validation Iou Booth | Validation Iou Television receiver | Validation Iou Airplane | Validation Iou Dirt track | Validation Iou Apparel | Validation Iou Pole | Validation Iou Land | Validation Iou Bannister | Validation Iou Escalator | Validation Iou Ottoman | Validation Iou Bottle | Validation Iou Buffet | Validation Iou Poster | Validation Iou Stage | Validation Iou Van | Validation Iou Ship | Validation Iou Fountain | Validation Iou Conveyer belt | Validation Iou Canopy | Validation Iou Washer | Validation Iou Plaything | Validation Iou Swimming pool | Validation Iou Stool | Validation Iou Barrel | Validation Iou Basket | Validation Iou Waterfall | Validation Iou Tent | Validation Iou Bag | Validation Iou Minibike | Validation Iou Cradle | Validation Iou Oven | Validation Iou Ball | Validation Iou Food | Validation Iou Step | Validation Iou Tank | Validation Iou Trade name | Validation Iou Microwave | Validation Iou Pot | Validation Iou Animal | Validation Iou Bicycle | Validation Iou Lake | Validation Iou Dishwasher | Validation Iou Screen | Validation Iou Blanket | Validation Iou Sculpture | Validation Iou Hood | Validation Iou Sconce | Validation Iou Vase | Validation Iou Traffic light | Validation Iou Tray | Validation Iou Ashcan | Validation Iou Fan | Validation Iou Pier | Validation Iou Crt screen | Validation Iou Plate | Validation Iou Monitor | Validation Iou Bulletin board | Validation Iou Shower | Validation Iou Radiator | Validation Iou Glass | Validation Iou Clock | Validation Iou Flag | Epoch |
348
- |:----------:|:---------------:|:-------------------:|:------------------------:|:---------------------------:|:------------------------:|:----------------------------:|:-----------------------:|:-------------------------:|:------------------------:|:---------------------------:|:------------------------:|:------------------------:|:------------------------------:|:-------------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-------------------------:|:------------------------:|:-------------------------:|:----------------------------:|:-------------------------:|:---------------------------:|:-------------------------:|:-----------------------:|:-------------------------:|:----------------------------:|:------------------------:|:-------------------------:|:-------------------------:|:-----------------------:|:--------------------------:|:-----------------------:|:-------------------------:|:----------------------------:|:------------------------:|:-------------------------:|:------------------------:|:------------------------:|:----------------------------:|:------------------------:|:---------------------------:|:---------------------------:|:---------------------------:|:------------------------:|:-----------------------:|:--------------------------:|:-----------------------------:|:------------------------------------:|:---------------------------:|:------------------------:|:------------------------:|:------------------------------:|:-----------------------------:|:--------------------------------:|:------------------------------:|:------------------------:|:--------------------------:|:--------------------------:|:------------------------:|:------------------------------:|:--------------------------:|:-------------------------------:|:----------------------------:|:-------------------------:|:--------------------------:|:----------------------------:|:-------------------------:|:--------------------------------:|:--------------------------:|:--------------------------:|:------------------------:|:------------------------:|:-------------------------:|:------------------------------:|:-------------------------:|:------------------------:|:----------------------------------:|:----------------------------:|:--------------------------------:|:------------------------:|:-----------------------:|:----------------------------------:|:-------------------------:|:-----------------------:|:-------------------------:|:-------------------------:|:-------------------------:|:-------------------------:|:------------------------------:|:--------------------------:|:-------------------------------:|:-------------------------:|:---------------------------------------:|:----------------------------:|:------------------------------:|:---------------------------:|:------------------------:|:------------------------:|:-----------------------------:|:-----------------------------:|:---------------------------:|:--------------------------:|:--------------------------:|:--------------------------:|:-------------------------:|:-----------------------:|:------------------------:|:----------------------------:|:---------------------------------:|:--------------------------:|:--------------------------:|:-----------------------------:|:---------------------------------:|:-------------------------:|:--------------------------:|:--------------------------:|:-----------------------------:|:------------------------:|:-----------------------:|:----------------------------:|:--------------------------:|:------------------------:|:------------------------:|:------------------------:|:------------------------:|:------------------------:|:------------------------------:|:-----------------------------:|:-----------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------------:|:--------------------------:|:---------------------------:|:-----------------------------:|:------------------------:|:--------------------------:|:------------------------:|:---------------------------------:|:------------------------:|:--------------------------:|:-----------------------:|:------------------------:|:------------------------------:|:-------------------------:|:---------------------------:|:----------------------------------:|:--------------------------:|:----------------------------:|:-------------------------:|:-------------------------:|:------------------------:|:-------------------:|:-----------------------:|:------------------:|:--------------------:|:-------------------:|:----------------------:|:-------------------:|:-------------------:|:-------------------------:|:--------------------:|:----------------------:|:-----------------------:|:---------------------:|:--------------------:|:-------------------:|:--------------------:|:-----------------------:|:--------------------:|:----------------------:|:--------------------:|:------------------:|:--------------------:|:-----------------------:|:-------------------:|:--------------------:|:--------------------:|:------------------:|:---------------------:|:------------------:|:--------------------:|:-----------------------:|:-------------------:|:--------------------:|:-------------------:|:-------------------:|:-----------------------:|:-------------------:|:----------------------:|:----------------------:|:----------------------:|:-------------------:|:------------------:|:---------------------:|:------------------------:|:-------------------------------:|:----------------------:|:-------------------:|:-------------------:|:-------------------------:|:------------------------:|:---------------------------:|:-------------------------:|:-------------------:|:---------------------:|:---------------------:|:-------------------:|:-------------------------:|:---------------------:|:--------------------------:|:-----------------------:|:--------------------:|:---------------------:|:-----------------------:|:--------------------:|:---------------------------:|:---------------------:|:---------------------:|:-------------------:|:-------------------:|:--------------------:|:-------------------------:|:--------------------:|:-------------------:|:-----------------------------:|:-----------------------:|:---------------------------:|:-------------------:|:------------------:|:-----------------------------:|:--------------------:|:------------------:|:--------------------:|:--------------------:|:--------------------:|:--------------------:|:-------------------------:|:---------------------:|:--------------------------:|:--------------------:|:----------------------------------:|:-----------------------:|:-------------------------:|:----------------------:|:-------------------:|:-------------------:|:------------------------:|:------------------------:|:----------------------:|:---------------------:|:---------------------:|:---------------------:|:--------------------:|:------------------:|:-------------------:|:-----------------------:|:----------------------------:|:---------------------:|:---------------------:|:------------------------:|:----------------------------:|:--------------------:|:---------------------:|:---------------------:|:------------------------:|:-------------------:|:------------------:|:-----------------------:|:---------------------:|:-------------------:|:-------------------:|:-------------------:|:-------------------:|:-------------------:|:-------------------------:|:------------------------:|:------------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------------:|:---------------------:|:----------------------:|:------------------------:|:-------------------:|:---------------------:|:-------------------:|:----------------------------:|:-------------------:|:---------------------:|:------------------:|:-------------------:|:-------------------------:|:--------------------:|:----------------------:|:-----------------------------:|:---------------------:|:-----------------------:|:--------------------:|:--------------------:|:-------------------:|:-----:|
349
- | 1.0088 | 0.4725 | 0.0000 | 0.0001 | 0.0001 | 0.0006 | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0006 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0 |
350
- | 0.4398 | 0.4008 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 1 |
351
 
352
 
353
  ### Framework versions
 
15
 
16
  This model is a fine-tuned version of [nvidia/segformer-b3-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b3-finetuned-ade-512-512) on an unknown dataset.
17
  It achieves the following results on the evaluation set:
18
+ - Train Loss: 1.2150
19
+ - Validation Loss: 0.6691
20
+ - Validation Mean Iou: 0.0149
21
+ - Validation Mean Accuracy: 0.0576
22
+ - Validation Overall Accuracy: 0.0526
23
+ - Validation Accuracy Clutter: 0.0355
24
+ - Validation Accuracy Building: 0.0698
25
+ - Validation Accuracy Road: 0.1084
26
+ - Validation Accuracy Static Car: 0.0000
27
+ - Validation Accuracy Tree: 0.1892
28
+ - Validation Accuracy Vegetation: 0.0
29
+ - Validation Accuracy Human: 0.0
30
+ - Validation Accuracy Moving Car: nan
31
+ - Validation Iou Clutter: 0.0241
32
+ - Validation Iou Building: 0.0108
33
+ - Validation Iou Road: 0.0100
34
+ - Validation Iou Static Car: 0.0000
35
+ - Validation Iou Tree: 0.0739
36
+ - Validation Iou Vegetation: 0.0
37
+ - Validation Iou Human: 0.0
38
+ - Validation Iou Moving Car: 0.0
39
+ - Epoch: 0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
  ## Model description
42
 
 
60
 
61
  ### Training results
62
 
63
+ | Train Loss | Validation Loss | Validation Mean Iou | Validation Mean Accuracy | Validation Overall Accuracy | Validation Accuracy Clutter | Validation Accuracy Building | Validation Accuracy Road | Validation Accuracy Static Car | Validation Accuracy Tree | Validation Accuracy Vegetation | Validation Accuracy Human | Validation Accuracy Moving Car | Validation Iou Clutter | Validation Iou Building | Validation Iou Road | Validation Iou Static Car | Validation Iou Tree | Validation Iou Vegetation | Validation Iou Human | Validation Iou Moving Car | Epoch |
64
+ |:----------:|:---------------:|:-------------------:|:------------------------:|:---------------------------:|:---------------------------:|:----------------------------:|:------------------------:|:------------------------------:|:------------------------:|:------------------------------:|:-------------------------:|:------------------------------:|:----------------------:|:-----------------------:|:-------------------:|:-------------------------:|:-------------------:|:-------------------------:|:--------------------:|:-------------------------:|:-----:|
65
+ | 1.2150 | 0.6691 | 0.0149 | 0.0576 | 0.0526 | 0.0355 | 0.0698 | 0.1084 | 0.0000 | 0.1892 | 0.0 | 0.0 | nan | 0.0241 | 0.0108 | 0.0100 | 0.0000 | 0.0739 | 0.0 | 0.0 | 0.0 | 0 |
 
66
 
67
 
68
  ### Framework versions
config.json CHANGED
@@ -28,310 +28,26 @@
28
  512
29
  ],
30
  "id2label": {
31
- "0": "wall",
32
  "1": "building",
33
- "2": "sky",
34
- "3": "floor",
35
  "4": "tree",
36
- "5": "ceiling",
37
- "6": "road",
38
- "7": "bed ",
39
- "8": "windowpane",
40
- "9": "grass",
41
- "10": "cabinet",
42
- "11": "sidewalk",
43
- "12": "person",
44
- "13": "earth",
45
- "14": "door",
46
- "15": "table",
47
- "16": "mountain",
48
- "17": "plant",
49
- "18": "curtain",
50
- "19": "chair",
51
- "20": "car",
52
- "21": "water",
53
- "22": "painting",
54
- "23": "sofa",
55
- "24": "shelf",
56
- "25": "house",
57
- "26": "sea",
58
- "27": "mirror",
59
- "28": "rug",
60
- "29": "field",
61
- "30": "armchair",
62
- "31": "seat",
63
- "32": "fence",
64
- "33": "desk",
65
- "34": "rock",
66
- "35": "wardrobe",
67
- "36": "lamp",
68
- "37": "bathtub",
69
- "38": "railing",
70
- "39": "cushion",
71
- "40": "base",
72
- "41": "box",
73
- "42": "column",
74
- "43": "signboard",
75
- "44": "chest of drawers",
76
- "45": "counter",
77
- "46": "sand",
78
- "47": "sink",
79
- "48": "skyscraper",
80
- "49": "fireplace",
81
- "50": "refrigerator",
82
- "51": "grandstand",
83
- "52": "path",
84
- "53": "stairs",
85
- "54": "runway",
86
- "55": "case",
87
- "56": "pool table",
88
- "57": "pillow",
89
- "58": "screen door",
90
- "59": "stairway",
91
- "60": "river",
92
- "61": "bridge",
93
- "62": "bookcase",
94
- "63": "blind",
95
- "64": "coffee table",
96
- "65": "toilet",
97
- "66": "flower",
98
- "67": "book",
99
- "68": "hill",
100
- "69": "bench",
101
- "70": "countertop",
102
- "71": "stove",
103
- "72": "palm",
104
- "73": "kitchen island",
105
- "74": "computer",
106
- "75": "swivel chair",
107
- "76": "boat",
108
- "77": "bar",
109
- "78": "arcade machine",
110
- "79": "hovel",
111
- "80": "bus",
112
- "81": "towel",
113
- "82": "light",
114
- "83": "truck",
115
- "84": "tower",
116
- "85": "chandelier",
117
- "86": "awning",
118
- "87": "streetlight",
119
- "88": "booth",
120
- "89": "television receiver",
121
- "90": "airplane",
122
- "91": "dirt track",
123
- "92": "apparel",
124
- "93": "pole",
125
- "94": "land",
126
- "95": "bannister",
127
- "96": "escalator",
128
- "97": "ottoman",
129
- "98": "bottle",
130
- "99": "buffet",
131
- "100": "poster",
132
- "101": "stage",
133
- "102": "van",
134
- "103": "ship",
135
- "104": "fountain",
136
- "105": "conveyer belt",
137
- "106": "canopy",
138
- "107": "washer",
139
- "108": "plaything",
140
- "109": "swimming pool",
141
- "110": "stool",
142
- "111": "barrel",
143
- "112": "basket",
144
- "113": "waterfall",
145
- "114": "tent",
146
- "115": "bag",
147
- "116": "minibike",
148
- "117": "cradle",
149
- "118": "oven",
150
- "119": "ball",
151
- "120": "food",
152
- "121": "step",
153
- "122": "tank",
154
- "123": "trade name",
155
- "124": "microwave",
156
- "125": "pot",
157
- "126": "animal",
158
- "127": "bicycle",
159
- "128": "lake",
160
- "129": "dishwasher",
161
- "130": "screen",
162
- "131": "blanket",
163
- "132": "sculpture",
164
- "133": "hood",
165
- "134": "sconce",
166
- "135": "vase",
167
- "136": "traffic light",
168
- "137": "tray",
169
- "138": "ashcan",
170
- "139": "fan",
171
- "140": "pier",
172
- "141": "crt screen",
173
- "142": "plate",
174
- "143": "monitor",
175
- "144": "bulletin board",
176
- "145": "shower",
177
- "146": "radiator",
178
- "147": "glass",
179
- "148": "clock",
180
- "149": "flag"
181
  },
182
  "image_size": 224,
183
  "initializer_range": 0.02,
184
  "label2id": {
185
- "airplane": 90,
186
- "animal": 126,
187
- "apparel": 92,
188
- "arcade machine": 78,
189
- "armchair": 30,
190
- "ashcan": 138,
191
- "awning": 86,
192
- "bag": 115,
193
- "ball": 119,
194
- "bannister": 95,
195
- "bar": 77,
196
- "barrel": 111,
197
- "base": 40,
198
- "basket": 112,
199
- "bathtub": 37,
200
- "bed ": 7,
201
- "bench": 69,
202
- "bicycle": 127,
203
- "blanket": 131,
204
- "blind": 63,
205
- "boat": 76,
206
- "book": 67,
207
- "bookcase": 62,
208
- "booth": 88,
209
- "bottle": 98,
210
- "box": 41,
211
- "bridge": 61,
212
- "buffet": 99,
213
  "building": 1,
214
- "bulletin board": 144,
215
- "bus": 80,
216
- "cabinet": 10,
217
- "canopy": 106,
218
- "car": 20,
219
- "case": 55,
220
- "ceiling": 5,
221
- "chair": 19,
222
- "chandelier": 85,
223
- "chest of drawers": 44,
224
- "clock": 148,
225
- "coffee table": 64,
226
- "column": 42,
227
- "computer": 74,
228
- "conveyer belt": 105,
229
- "counter": 45,
230
- "countertop": 70,
231
- "cradle": 117,
232
- "crt screen": 141,
233
- "curtain": 18,
234
- "cushion": 39,
235
- "desk": 33,
236
- "dirt track": 91,
237
- "dishwasher": 129,
238
- "door": 14,
239
- "earth": 13,
240
- "escalator": 96,
241
- "fan": 139,
242
- "fence": 32,
243
- "field": 29,
244
- "fireplace": 49,
245
- "flag": 149,
246
- "floor": 3,
247
- "flower": 66,
248
- "food": 120,
249
- "fountain": 104,
250
- "glass": 147,
251
- "grandstand": 51,
252
- "grass": 9,
253
- "hill": 68,
254
- "hood": 133,
255
- "house": 25,
256
- "hovel": 79,
257
- "kitchen island": 73,
258
- "lake": 128,
259
- "lamp": 36,
260
- "land": 94,
261
- "light": 82,
262
- "microwave": 124,
263
- "minibike": 116,
264
- "mirror": 27,
265
- "monitor": 143,
266
- "mountain": 16,
267
- "ottoman": 97,
268
- "oven": 118,
269
- "painting": 22,
270
- "palm": 72,
271
- "path": 52,
272
- "person": 12,
273
- "pier": 140,
274
- "pillow": 57,
275
- "plant": 17,
276
- "plate": 142,
277
- "plaything": 108,
278
- "pole": 93,
279
- "pool table": 56,
280
- "poster": 100,
281
- "pot": 125,
282
- "radiator": 146,
283
- "railing": 38,
284
- "refrigerator": 50,
285
- "river": 60,
286
- "road": 6,
287
- "rock": 34,
288
- "rug": 28,
289
- "runway": 54,
290
- "sand": 46,
291
- "sconce": 134,
292
- "screen": 130,
293
- "screen door": 58,
294
- "sculpture": 132,
295
- "sea": 26,
296
- "seat": 31,
297
- "shelf": 24,
298
- "ship": 103,
299
- "shower": 145,
300
- "sidewalk": 11,
301
- "signboard": 43,
302
- "sink": 47,
303
- "sky": 2,
304
- "skyscraper": 48,
305
- "sofa": 23,
306
- "stage": 101,
307
- "stairs": 53,
308
- "stairway": 59,
309
- "step": 121,
310
- "stool": 110,
311
- "stove": 71,
312
- "streetlight": 87,
313
- "swimming pool": 109,
314
- "swivel chair": 75,
315
- "table": 15,
316
- "tank": 122,
317
- "television receiver": 89,
318
- "tent": 114,
319
- "toilet": 65,
320
- "towel": 81,
321
- "tower": 84,
322
- "trade name": 123,
323
- "traffic light": 136,
324
- "tray": 137,
325
  "tree": 4,
326
- "truck": 83,
327
- "van": 102,
328
- "vase": 135,
329
- "wall": 0,
330
- "wardrobe": 35,
331
- "washer": 107,
332
- "water": 21,
333
- "waterfall": 113,
334
- "windowpane": 8
335
  },
336
  "layer_norm_eps": 1e-06,
337
  "mlp_ratios": [
 
28
  512
29
  ],
30
  "id2label": {
31
+ "0": "clutter",
32
  "1": "building",
33
+ "2": "road",
34
+ "3": "static_car",
35
  "4": "tree",
36
+ "5": "vegetation",
37
+ "6": "human",
38
+ "7": "moving_car"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
  },
40
  "image_size": 224,
41
  "initializer_range": 0.02,
42
  "label2id": {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
  "building": 1,
44
+ "clutter": 0,
45
+ "human": 6,
46
+ "moving_car": 7,
47
+ "road": 2,
48
+ "static_car": 3,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
  "tree": 4,
50
+ "vegetation": 5
 
 
 
 
 
 
 
 
51
  },
52
  "layer_norm_eps": 1e-06,
53
  "mlp_ratios": [
tf_model.h5 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:be75ef0d98f87dd5478459dd2ab7c7b1cd78d55b5c0a9a4d53465891dac43e38
3
- size 190190000
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75e60e4b02e966e82f3cb5b3df9526b7534f938d420b157201f0d9280920ad2f
3
+ size 189768152