{"policy_class": {":type:": "", ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu", "__module__": "stable_baselines3.sac.policies", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c7655759540>"}, "verbose": 1, "policy_kwargs": {"use_sde": false}, "num_timesteps": 5000, "_total_timesteps": 5000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1717182970377333480, "learning_rate": 0.00073, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAADkEDvu+WqD+qPS2/uAtCvyykYr8dfBG/IZ9jPj1Zu7s0wb4+0kknvuOC1j55o7c+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYQfHvt60mj+QqKK/oFbKv5aYor9Lx5C/Bfa+v4lKmz4B2ay/jazKvsD+Uj8415A/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAOQQO+75aoP6o9Lb+ZdhC/J/qWP5Y9v7+4C0K/LKRivx18Eb+wmLi/cZKOPag4074hn2M+PVm7uzTBvj62IdE++FEHvOZGmT7SSSe+44LWPnmjtz5JBv29hovkPzTwjj+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.12817785 1.3171061 -0.67672217]\n [-0.7579913 -0.88531756 -0.56830007]\n [ 0.22228672 -0.00571743 0.37256777]\n [-0.16336754 0.41896734 0.35866907]]", "desired_goal": "[[-0.38872817 1.2086446 -1.2707691 ]\n [-1.5807686 -1.2702816 -1.1310819 ]\n [-1.4918829 0.30330303 -1.3503724 ]\n [-0.3958477 0.8241997 1.131568 ]]", "observation": "[[-0.12817785 1.3171061 -0.67672217 -0.56430966 1.179509 -1.494067 ]\n [-0.7579913 -0.88531756 -0.56830007 -1.4421597 0.06961525 -0.41254163]\n [ 0.22228672 -0.00571743 0.37256777 0.40846032 -0.00825929 0.29936904]\n [-0.16336754 0.41896734 0.35866907 -0.12354714 1.7855079 1.1167054 ]]"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAiCkLPM1Blj33lvA976I5vQLTR71pwAA+6nIdPRlsGqxDI0o++suzO+L0wDy9DUk+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA0LkWvZg25D27ANY8wSAXvtpS4b03sR89MKsOvnZM+jz+8pk8pG8ZvVngnT1XS30+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACIKQs8zUGWPfeW8D1N0ri+udQmPyNti7/vojm9AtNHvWnAAD7ozS+/TQIvPRBi3b7qch09GWwarEMjSj4AAAAAAAAAgAAAAAD6y7M74vTAPL0NST5XKEq+svJ7P9Qq/j6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 8.4937885e-03 7.3367693e-02 1.1747544e-01]\n [-4.5321401e-02 -4.8785217e-02 1.2573399e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 5.4869624e-03 2.3554269e-02 1.9634147e-01]]", "desired_goal": "[[-0.0367983 0.11143225 0.0261234 ]\n [-0.14758588 -0.11002131 0.03898736]\n [-0.1393249 0.03055404 0.01879263]\n [-0.03745998 0.07708807 0.24735771]]", "observation": "[[ 8.4937885e-03 7.3367693e-02 1.1747544e-01 -3.6097947e-01\n 6.5168339e-01 -1.0892681e+00]\n [-4.5321401e-02 -4.8785217e-02 1.2573399e-01 -6.8673563e-01\n 4.2726804e-02 -4.3238878e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 5.4869624e-03 2.3554269e-02 1.9634147e-01 -1.9741951e-01\n 9.8417199e-01 4.9642050e-01]]"}, "_episode_num": 1698, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv6LYf4h2W6eMAWyUSwGMAXSUR0CpgIPNVzZIdX2UKGgGR7/Mvh60IC2daAdLA2gIR0Cpgw/io86ndX2UKGgGR7/Gr8R+SbH7aAdLA2gIR0CphGKcmShbdX2UKGgGR7/Y0btJFspHaAdLBGgIR0CpiBMH8jzJdX2UKGgGR7/RpfhMrVe8aAdLA2gIR0CpiSCa7VawdX2UKGgGR7/ThiLEUCaJaAdLBGgIR0CpiKenZTQ3dX2UKGgGR7/IFi8WbgCPaAdLA2gIR0CpidFiay8jdX2UKGgGR7/PBzmwJPZaaAdLA2gIR0CpjOFTWGypdX2UKGgGR7+9YdQwblzVaAdLAmgIR0CpjF43FUADdX2UKGgGR7/GX4TK1XvIaAdLA2gIR0CpjY1Cw8nvdX2UKGgGR7+3uBtk4FRpaAdLAmgIR0CpkCRgqmTDdX2UKGgGR7/BOiWVu76IaAdLAmgIR0Cpj6FHavicdX2UKGgGR7/RStvGZNO/aAdLA2gIR0CpjrozvZyudX2UKGgGR7+0LhJiAlOXaAdLAmgIR0Cpk08a4tpVdX2UKGgGR7+4Nz8xbjcVaAdLAmgIR0Cpksv+XJHRdX2UKGgGR7/RwCKaXrt3aAdLA2gIR0CpklMPatcOdX2UKGgGR7+7ZUT+NtIkaAdLAmgIR0CpkeTx5LRKdX2UKGgGR7+0Bq9Gqgh9aAdLAmgIR0Cpln2P91lodX2UKGgGR7/BI5o4+8oQaAdLAmgIR0CplfqWkadddX2UKGgGR7+h1s+FDfFaaAdLAWgIR0CpmBjfek57dX2UKGgGR7/TDxsl9jPOaAdLA2gIR0CplxzF+/g0dX2UKGgGR7/F7qIJqqOtaAdLA2gIR0Cplq6pgkTpdX2UKGgGR7/FAzpHI6sAaAdLAmgIR0CpmTLg4wRHdX2UKGgGR7/HCVKPGQ0XaAdLA2gIR0CpnTgUcn3MdX2UKGgGR7/JKZlWfbsXaAdLA2gIR0Cpm89NFjNIdX2UKGgGR7/Wu6VdHDrJaAdLBGgIR0Cpnl9NWU8ndX2UKGgGR7/dyrgflp49aAdLBGgIR0CpoTBfKISEdX2UKGgGR7/AKRdQfp2VaAdLAmgIR0CpoEp9AooedX2UKGgGR7/RxcmjTKDDaAdLA2gIR0Cpo2rSNOuadX2UKGgGR7+/7pFCswL3aAdLAmgIR0Cpom6ZQYUGdX2UKGgGR7+8tXgccU/OaAdLAmgIR0CppaDbBXS0dX2UKGgGR7/UVRUFSsKcaAdLA2gIR0CppTK1og3cdX2UKGgGR7/UByS3b212aAdLA2gIR0CpqC49X9zfdX2UKGgGR7/VvCuU2UB5aAdLBGgIR0Cpp6tKqXF+dX2UKGgGR7/AFajesPrfaAdLAmgIR0Cpq1lHSWqtdX2UKGgGR7/G/TLGJemfaAdLA2gIR0CpqlzhP0qZdX2UKGgGR7/Oal1r6+FlaAdLA2gIR0CprG+wLVnVdX2UKGgGR7/W8EV32VVxaAdLBGgIR0Cpq4iqp97XdX2UKGgGR7++SxJNCZ4OaAdLAmgIR0CpraX9rGipdX2UKGgGR79ou01IiC8OaAdLAWgIR0CprTgHNX5ndX2UKGgGR7/NZHNHH3lCaAdLA2gIR0CpsEQsGxD9dX2UKGgGR7/RDaGpMpPRaAdLA2gIR0CpsWOCf6GhdX2UKGgGR7/IpQUHpr1vaAdLA2gIR0CpsiYF7laKdX2UKGgGR7/HHoX9BKL9aAdLA2gIR0CptTRrSE13dX2UKGgGR7/Wdt2s7uD0aAdLBGgIR0CptDhsqJ/HdX2UKGgGR7/JOKO1fE4vaAdLA2gIR0Cpto6MJhOQdX2UKGgGR7+4eV9nbqQjaAdLAmgIR0CpuTVZDArQdX2UKGgGR7+nOt4iX6ZZaAdLAWgIR0CpuLN+TeO5dX2UKGgGR7/QY2sJY1YRaAdLA2gIR0Cpt82k8A7xdX2UKGgGR7/a/tIClrM1aAdLBGgIR0CpvIVO0svqdX2UKGgGR7/AXQdCE6DHaAdLAmgIR0CpvBc2aUiZdX2UKGgGR7/SYRujynUEaAdLA2gIR0CpvqycslLOdX2UKGgGR7/hKebutwJgaAdLBGgIR0CpwNHtWuHOdX2UKGgGR7+xMvh60IC2aAdLAmgIR0Cpv2dg4OtodX2UKGgGR7/VohIOH310aAdLBGgIR0Cpwxj5j6N3dX2UKGgGR7/ZbeMyad+YaAdLBGgIR0CpxTRISUTtdX2UKGgGR7/QYl6Z6UqyaAdLA2gIR0CpxEz+NtIkdX2UKGgGR7/Xy/KyOaOQaAdLBGgIR0Cpx1BoM8YAdX2UKGgGR7+7/S6UaAFxaAdLAmgIR0CpxlR/mT1TdX2UKGgGR7+1TYNAkcCHaAdLAmgIR0CpyZZPVNHpdX2UKGgGR7/UOnVG0/noaAdLBGgIR0CpyrvStvGZdX2UKGgGR7/Xf8/D+BH1aAdLBGgIR0CpzdDlPrOadX2UKGgGR7/eJiAlOXVtaAdLBWgIR0CpzU4VZcLSdX2UKGgGR7/GdCE6DGtIaAdLA2gIR0CpzoCgTRICdX2UKGgGR7/DS8an752yaAdLAmgIR0Cp0V3Rw6yTdX2UKGgGR7/FdHDrJKaoaAdLA2gIR0Cp0ufbCaZydX2UKGgGR7+6GahHskY5aAdLAmgIR0Cp0nDynUDudX2UKGgGR7/Xd3Sro4dZaAdLBGgIR0Cp0gOC5EtvdX2UKGgGR7+zPiT+vQnhaAdLAmgIR0Cp1dH8sMAndX2UKGgGR7+mseXAuZkTaAdLAWgIR0Cp1Gqyv9tNdX2UKGgGR7/AZ6Uqx1PnaAdLAmgIR0Cp1rNtygf2dX2UKGgGR7/QDSw4bS7YaAdLA2gIR0Cp2MPG6wt8dX2UKGgGR7/NWQOnVG1AaAdLA2gIR0Cp2tzFl05mdX2UKGgGR7/EEug6EJ0GaAdLAmgIR0Cp2eBttQ9BdX2UKGgGR7/NK+SKWLP2aAdLA2gIR0Cp2XJeNT99dX2UKGgGR7/I2S+xnnMdaAdLA2gIR0Cp3YRpUPxydX2UKGgGR7+yT+vQnhKlaAdLAmgIR0Cp3QvYe1a4dX2UKGgGR7/PQNTcZccEaAdLA2gIR0Cp36V6NVBEdX2UKGgGR7+pdhRZU1htaAdLAWgIR0Cp3yJ+lTFVdX2UKGgGR7+mpMpPRAryaAdLAWgIR0Cp3ql7laKUdX2UKGgGR7/QkC3gDRtxaAdLA2gIR0Cp3jt8VpK0dX2UKGgGR7/CaYu01IiDaAdLAmgIR0Cp4eVeSjgydX2UKGgGR7/S4VARkEs8aAdLA2gIR0Cp5I238XN1dX2UKGgGR7/MQQL/jsD5aAdLA2gIR0Cp5AqesgdPdX2UKGgGR7/P0kGA08/2aAdLA2gIR0Cp4yMt9QXRdX2UKGgGR7/B4593KSxJaAdLAmgIR0Cp5ypYcNpedX2UKGgGR7/UYI0IkZ75aAdLA2gIR0Cp5rFUZNwjdX2UKGgGR7/Pr6ciGFi8aAdLA2gIR0Cp59w4S6DodX2UKGgGR7/YZFG5MDfWaAdLBGgIR0Cp6xlrl/6PdX2UKGgGR7/AzJIUahpQaAdLAmgIR0Cp6peE7GNrdX2UKGgGR7/HnJT2nKnvaAdLA2gIR0Cp7EAGjbi7dX2UKGgGR7+vqTr3TNMXaAdLAmgIR0Cp73vYODradX2UKGgGR7/RbHIZIg/1aAdLA2gIR0Cp7hNkvsZ6dX2UKGgGR7/I77Kq4pc5aAdLA2gIR0Cp8RfjbSJCdX2UKGgGR7/B20Re1KGtaAdLAmgIR0Cp80C66J66dX2UKGgGR7+jWbwz+FURaAdLAWgIR0Cp9NODJ2dNdX2UKGgGR7/BdnkDIRywaAdLAmgIR0Cp9FCVKPGRdX2UKGgGR7/fZydWhh6TaAdLBWgIR0Cp9XWn889wdX2UKGgGR7/U7cwg1WKeaAdLBGgIR0Cp9QfRNRFadX2UKGgGR7+lHJ9y925haAdLAWgIR0Cp9yUyYXwcdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhlLg=="}, "_n_updates": 239936, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 100, "tau": 0.005, "gamma": 0.98, "gradient_steps": 64, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "", ":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observation_space': , 'obs_shape': typing.Dict[str, typing.Tuple[int, ...]], 'observations': typing.Dict[str, numpy.ndarray], 'next_observations': typing.Dict[str, numpy.ndarray]}", "__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "", "add": "", "sample": "", "_get_samples": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c7655879700>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": -3.0, "ent_coef": "auto", "target_update_interval": 1, "observation_space": {":type:": "", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVYAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEF9fZ2VuZXJhdG9yX2N0b3KUk5SMBVBDRzY0lGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAVQQ0c2NJSMBXN0YXRllH2UKGg9ihDwbaKlYBeKHeTLHmNJ38kJjANpbmOUihD12/Kc+u2yXKD0NKWDdE0RdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 4, "lr_schedule": {":type:": "", ":serialized:": "gAWVoAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwIPGxhbWJkYT6US2FDAgwAlIwOdmFsdWVfc2NoZWR1bGWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgPjAxfX3F1YWxuYW1lX1+UjCFnZXRfc2NoZWR1bGVfZm4uPGxvY2Fscz4uPGxhbWJkYT6UjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOUaAIoaAcoSwFLAEsASwFLAUsTQwSIAFMAlGgJKYwBX5SFlGgOjARmdW5jlEuFQwIEAZSMA3ZhbJSFlCl0lFKUaBVOTmgdKVKUhZR0lFKUaCRoPn2UfZQoaBhoNWgnjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlGgpfZRoK05oLE5oLWgZaC5OaC9oMUc/R+uvECNjsoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwhZRSlIWUaEZdlGhIfZR1hpSGUjAu"}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.3.2", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}