--- tags: - generated_from_trainer datasets: - ncbi_disease metrics: - precision - recall - f1 - accuracy model-index: - name: electramed-small-NCBI-ner results: - task: name: Token Classification type: token-classification dataset: name: ncbi_disease type: ncbi_disease config: ncbi_disease split: train args: ncbi_disease metrics: - name: Precision type: precision value: 0.8083491461100569 - name: Recall type: recall value: 0.8875 - name: F1 type: f1 value: 0.846077457795432 - name: Accuracy type: accuracy value: 0.9820794382985671 --- # electramed-small-NCBI-ner This model is a fine-tuned version of [giacomomiolo/electramed_small_scivocab](https://huggingface.co/giacomomiolo/electramed_small_scivocab) on the ncbi_disease dataset. It achieves the following results on the evaluation set: - Loss: 0.0664 - Precision: 0.8083 - Recall: 0.8875 - F1: 0.8461 - Accuracy: 0.9821 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4787 | 1.0 | 340 | 0.5090 | 0.6090 | 0.5062 | 0.5529 | 0.9608 | | 0.2029 | 2.0 | 680 | 0.1890 | 0.7643 | 0.8208 | 0.7916 | 0.9774 | | 0.1402 | 3.0 | 1020 | 0.1106 | 0.7839 | 0.8802 | 0.8292 | 0.9807 | | 0.075 | 4.0 | 1360 | 0.0876 | 0.8162 | 0.8698 | 0.8422 | 0.9817 | | 0.0408 | 5.0 | 1700 | 0.0776 | 0.8090 | 0.8781 | 0.8422 | 0.9818 | | 0.0308 | 6.0 | 2040 | 0.0697 | 0.8044 | 0.8823 | 0.8415 | 0.9825 | | 0.0405 | 7.0 | 2380 | 0.0680 | 0.8118 | 0.8854 | 0.8470 | 0.9830 | | 0.0138 | 8.0 | 2720 | 0.0665 | 0.8111 | 0.8854 | 0.8466 | 0.9826 | | 0.0223 | 9.0 | 3060 | 0.0675 | 0.8064 | 0.8896 | 0.8460 | 0.9821 | | 0.0395 | 10.0 | 3400 | 0.0664 | 0.8083 | 0.8875 | 0.8461 | 0.9821 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1