chchen commited on
Commit
2d8e16b
·
verified ·
1 Parent(s): 202706c

Training in progress, step 1500

Browse files
Files changed (2) hide show
  1. adapter_model.safetensors +1 -1
  2. trainer_log.jsonl +51 -0
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2dc1338d2e6fdab48e6ef489a6063120783ff3ed30206ac9dd7a8be2ba88decb
3
  size 100059752
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a12b1612ae6a74d0a146483c3e4c86fc3643587bead424abd89146c27f1edfe
3
  size 100059752
trainer_log.jsonl CHANGED
@@ -100,3 +100,54 @@
100
  {"current_steps": 990, "total_steps": 1854, "loss": 1.203, "accuracy": 0.512499988079071, "learning_rate": 2.2338200545580577e-06, "epoch": 1.600323297635886, "percentage": 53.4, "elapsed_time": "3:33:05", "remaining_time": "3:05:58"}
101
  {"current_steps": 1000, "total_steps": 1854, "loss": 1.1628, "accuracy": 0.581250011920929, "learning_rate": 2.191736455761947e-06, "epoch": 1.616488179430188, "percentage": 53.94, "elapsed_time": "3:35:08", "remaining_time": "3:03:43"}
102
  {"current_steps": 1000, "total_steps": 1854, "eval_loss": 1.2833058834075928, "epoch": 1.616488179430188, "percentage": 53.94, "elapsed_time": "3:38:49", "remaining_time": "3:06:52"}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100
  {"current_steps": 990, "total_steps": 1854, "loss": 1.203, "accuracy": 0.512499988079071, "learning_rate": 2.2338200545580577e-06, "epoch": 1.600323297635886, "percentage": 53.4, "elapsed_time": "3:33:05", "remaining_time": "3:05:58"}
101
  {"current_steps": 1000, "total_steps": 1854, "loss": 1.1628, "accuracy": 0.581250011920929, "learning_rate": 2.191736455761947e-06, "epoch": 1.616488179430188, "percentage": 53.94, "elapsed_time": "3:35:08", "remaining_time": "3:03:43"}
102
  {"current_steps": 1000, "total_steps": 1854, "eval_loss": 1.2833058834075928, "epoch": 1.616488179430188, "percentage": 53.94, "elapsed_time": "3:38:49", "remaining_time": "3:06:52"}
103
+ {"current_steps": 1010, "total_steps": 1854, "loss": 1.2703, "accuracy": 0.6312500238418579, "learning_rate": 2.1497413764574673e-06, "epoch": 1.6326530612244898, "percentage": 54.48, "elapsed_time": "3:41:11", "remaining_time": "3:04:49"}
104
+ {"current_steps": 1020, "total_steps": 1854, "loss": 1.1845, "accuracy": 0.5562499761581421, "learning_rate": 2.1078468757516395e-06, "epoch": 1.6488179430187917, "percentage": 55.02, "elapsed_time": "3:43:16", "remaining_time": "3:02:33"}
105
+ {"current_steps": 1030, "total_steps": 1854, "loss": 1.2211, "accuracy": 0.5375000238418579, "learning_rate": 2.0660649838698145e-06, "epoch": 1.6649828248130936, "percentage": 55.56, "elapsed_time": "3:45:23", "remaining_time": "3:00:18"}
106
+ {"current_steps": 1040, "total_steps": 1854, "loss": 1.2727, "accuracy": 0.625, "learning_rate": 2.0244076987011284e-06, "epoch": 1.6811477066073954, "percentage": 56.09, "elapsed_time": "3:47:33", "remaining_time": "2:58:06"}
107
+ {"current_steps": 1050, "total_steps": 1854, "loss": 1.2608, "accuracy": 0.5, "learning_rate": 1.982886982353251e-06, "epoch": 1.6973125884016973, "percentage": 56.63, "elapsed_time": "3:49:41", "remaining_time": "2:55:53"}
108
+ {"current_steps": 1060, "total_steps": 1854, "loss": 1.2653, "accuracy": 0.606249988079071, "learning_rate": 1.941514757717392e-06, "epoch": 1.7134774701959992, "percentage": 57.17, "elapsed_time": "3:51:55", "remaining_time": "2:53:43"}
109
+ {"current_steps": 1070, "total_steps": 1854, "loss": 1.2891, "accuracy": 0.550000011920929, "learning_rate": 1.9003029050445953e-06, "epoch": 1.729642351990301, "percentage": 57.71, "elapsed_time": "3:54:09", "remaining_time": "2:51:34"}
110
+ {"current_steps": 1080, "total_steps": 1854, "loss": 1.2246, "accuracy": 0.543749988079071, "learning_rate": 1.8592632585342523e-06, "epoch": 1.745807233784603, "percentage": 58.25, "elapsed_time": "3:56:15", "remaining_time": "2:49:19"}
111
+ {"current_steps": 1090, "total_steps": 1854, "loss": 1.2286, "accuracy": 0.53125, "learning_rate": 1.8184076029358527e-06, "epoch": 1.7619721155789048, "percentage": 58.79, "elapsed_time": "3:58:18", "remaining_time": "2:47:02"}
112
+ {"current_steps": 1100, "total_steps": 1854, "loss": 1.2518, "accuracy": 0.550000011920929, "learning_rate": 1.7777476701649318e-06, "epoch": 1.7781369973732066, "percentage": 59.33, "elapsed_time": "4:00:29", "remaining_time": "2:44:50"}
113
+ {"current_steps": 1110, "total_steps": 1854, "loss": 1.2055, "accuracy": 0.518750011920929, "learning_rate": 1.7372951359341925e-06, "epoch": 1.7943018791675085, "percentage": 59.87, "elapsed_time": "4:02:31", "remaining_time": "2:42:33"}
114
+ {"current_steps": 1120, "total_steps": 1854, "loss": 1.1728, "accuracy": 0.6000000238418579, "learning_rate": 1.6970616164007547e-06, "epoch": 1.8104667609618104, "percentage": 60.41, "elapsed_time": "4:04:24", "remaining_time": "2:40:10"}
115
+ {"current_steps": 1130, "total_steps": 1854, "loss": 1.2579, "accuracy": 0.5687500238418579, "learning_rate": 1.6570586648305276e-06, "epoch": 1.8266316427561122, "percentage": 60.95, "elapsed_time": "4:06:28", "remaining_time": "2:37:54"}
116
+ {"current_steps": 1140, "total_steps": 1854, "loss": 1.2837, "accuracy": 0.606249988079071, "learning_rate": 1.6172977682806151e-06, "epoch": 1.842796524550414, "percentage": 61.49, "elapsed_time": "4:08:28", "remaining_time": "2:35:37"}
117
+ {"current_steps": 1150, "total_steps": 1854, "loss": 1.3023, "accuracy": 0.5874999761581421, "learning_rate": 1.5777903443007586e-06, "epoch": 1.858961406344716, "percentage": 62.03, "elapsed_time": "4:10:31", "remaining_time": "2:33:22"}
118
+ {"current_steps": 1160, "total_steps": 1854, "loss": 1.2891, "accuracy": 0.606249988079071, "learning_rate": 1.5385477376547226e-06, "epoch": 1.8751262881390178, "percentage": 62.57, "elapsed_time": "4:12:41", "remaining_time": "2:31:10"}
119
+ {"current_steps": 1170, "total_steps": 1854, "loss": 1.2851, "accuracy": 0.5874999761581421, "learning_rate": 1.4995812170625845e-06, "epoch": 1.89129116993332, "percentage": 63.11, "elapsed_time": "4:14:51", "remaining_time": "2:28:59"}
120
+ {"current_steps": 1180, "total_steps": 1854, "loss": 1.2826, "accuracy": 0.6312500238418579, "learning_rate": 1.4609019719648666e-06, "epoch": 1.9074560517276218, "percentage": 63.65, "elapsed_time": "4:17:02", "remaining_time": "2:26:49"}
121
+ {"current_steps": 1190, "total_steps": 1854, "loss": 1.1283, "accuracy": 0.574999988079071, "learning_rate": 1.42252110930943e-06, "epoch": 1.9236209335219236, "percentage": 64.19, "elapsed_time": "4:18:59", "remaining_time": "2:24:30"}
122
+ {"current_steps": 1200, "total_steps": 1854, "loss": 1.2737, "accuracy": 0.543749988079071, "learning_rate": 1.3844496503620493e-06, "epoch": 1.9397858153162255, "percentage": 64.72, "elapsed_time": "4:21:15", "remaining_time": "2:22:23"}
123
+ {"current_steps": 1210, "total_steps": 1854, "loss": 1.3239, "accuracy": 0.6000000238418579, "learning_rate": 1.3466985275416081e-06, "epoch": 1.9559506971105274, "percentage": 65.26, "elapsed_time": "4:23:26", "remaining_time": "2:20:12"}
124
+ {"current_steps": 1220, "total_steps": 1854, "loss": 1.1934, "accuracy": 0.6499999761581421, "learning_rate": 1.309278581280791e-06, "epoch": 1.9721155789048292, "percentage": 65.8, "elapsed_time": "4:25:30", "remaining_time": "2:17:58"}
125
+ {"current_steps": 1230, "total_steps": 1854, "loss": 1.2599, "accuracy": 0.5625, "learning_rate": 1.272200556913199e-06, "epoch": 1.9882804606991311, "percentage": 66.34, "elapsed_time": "4:27:39", "remaining_time": "2:15:47"}
126
+ {"current_steps": 1240, "total_steps": 1854, "loss": 1.1791, "accuracy": 0.550000011920929, "learning_rate": 1.2354751015877698e-06, "epoch": 2.004445342493433, "percentage": 66.88, "elapsed_time": "4:29:39", "remaining_time": "2:13:31"}
127
+ {"current_steps": 1250, "total_steps": 1854, "loss": 1.2387, "accuracy": 0.612500011920929, "learning_rate": 1.1991127612113945e-06, "epoch": 2.020610224287735, "percentage": 67.42, "elapsed_time": "4:31:48", "remaining_time": "2:11:20"}
128
+ {"current_steps": 1260, "total_steps": 1854, "loss": 1.2314, "accuracy": 0.5874999761581421, "learning_rate": 1.1631239774206035e-06, "epoch": 2.036775106082037, "percentage": 67.96, "elapsed_time": "4:33:51", "remaining_time": "2:09:06"}
129
+ {"current_steps": 1270, "total_steps": 1854, "loss": 1.1925, "accuracy": 0.625, "learning_rate": 1.1275190845831978e-06, "epoch": 2.052939987876339, "percentage": 68.5, "elapsed_time": "4:36:05", "remaining_time": "2:06:57"}
130
+ {"current_steps": 1280, "total_steps": 1854, "loss": 1.2055, "accuracy": 0.606249988079071, "learning_rate": 1.0923083068306778e-06, "epoch": 2.0691048696706407, "percentage": 69.04, "elapsed_time": "4:38:18", "remaining_time": "2:04:48"}
131
+ {"current_steps": 1290, "total_steps": 1854, "loss": 1.1524, "accuracy": 0.581250011920929, "learning_rate": 1.0575017551223348e-06, "epoch": 2.0852697514649425, "percentage": 69.58, "elapsed_time": "4:40:17", "remaining_time": "2:02:32"}
132
+ {"current_steps": 1300, "total_steps": 1854, "loss": 1.2781, "accuracy": 0.625, "learning_rate": 1.023109424341833e-06, "epoch": 2.1014346332592444, "percentage": 70.12, "elapsed_time": "4:42:25", "remaining_time": "2:00:21"}
133
+ {"current_steps": 1310, "total_steps": 1854, "loss": 1.1632, "accuracy": 0.6000000238418579, "learning_rate": 9.891411904271273e-07, "epoch": 2.1175995150535463, "percentage": 70.66, "elapsed_time": "4:44:33", "remaining_time": "1:58:10"}
134
+ {"current_steps": 1320, "total_steps": 1854, "loss": 1.2112, "accuracy": 0.612500011920929, "learning_rate": 9.556068075345363e-07, "epoch": 2.133764396847848, "percentage": 71.2, "elapsed_time": "4:46:39", "remaining_time": "1:55:57"}
135
+ {"current_steps": 1330, "total_steps": 1854, "loss": 1.2468, "accuracy": 0.550000011920929, "learning_rate": 9.225159052377838e-07, "epoch": 2.14992927864215, "percentage": 71.74, "elapsed_time": "4:48:50", "remaining_time": "1:53:47"}
136
+ {"current_steps": 1340, "total_steps": 1854, "loss": 1.1442, "accuracy": 0.581250011920929, "learning_rate": 8.898779857628184e-07, "epoch": 2.166094160436452, "percentage": 72.28, "elapsed_time": "4:50:56", "remaining_time": "1:51:36"}
137
+ {"current_steps": 1350, "total_steps": 1854, "loss": 1.2754, "accuracy": 0.5687500238418579, "learning_rate": 8.577024212591975e-07, "epoch": 2.1822590422307537, "percentage": 72.82, "elapsed_time": "4:53:04", "remaining_time": "1:49:24"}
138
+ {"current_steps": 1360, "total_steps": 1854, "loss": 1.2643, "accuracy": 0.5625, "learning_rate": 8.259984511088276e-07, "epoch": 2.1984239240250556, "percentage": 73.35, "elapsed_time": "4:55:10", "remaining_time": "1:47:12"}
139
+ {"current_steps": 1370, "total_steps": 1854, "loss": 1.2001, "accuracy": 0.606249988079071, "learning_rate": 7.947751792728237e-07, "epoch": 2.2145888058193575, "percentage": 73.89, "elapsed_time": "4:57:13", "remaining_time": "1:45:00"}
140
+ {"current_steps": 1380, "total_steps": 1854, "loss": 1.2969, "accuracy": 0.6000000238418579, "learning_rate": 7.640415716772626e-07, "epoch": 2.2307536876136593, "percentage": 74.43, "elapsed_time": "4:59:31", "remaining_time": "1:42:52"}
141
+ {"current_steps": 1390, "total_steps": 1854, "loss": 1.2306, "accuracy": 0.6499999761581421, "learning_rate": 7.338064536385722e-07, "epoch": 2.246918569407961, "percentage": 74.97, "elapsed_time": "5:01:42", "remaining_time": "1:40:42"}
142
+ {"current_steps": 1400, "total_steps": 1854, "loss": 1.3115, "accuracy": 0.543749988079071, "learning_rate": 7.040785073292883e-07, "epoch": 2.263083451202263, "percentage": 75.51, "elapsed_time": "5:03:48", "remaining_time": "1:38:31"}
143
+ {"current_steps": 1410, "total_steps": 1854, "loss": 1.2055, "accuracy": 0.625, "learning_rate": 6.748662692849297e-07, "epoch": 2.279248332996565, "percentage": 76.05, "elapsed_time": "5:05:51", "remaining_time": "1:36:18"}
144
+ {"current_steps": 1420, "total_steps": 1854, "loss": 1.2286, "accuracy": 0.59375, "learning_rate": 6.46178127952686e-07, "epoch": 2.295413214790867, "percentage": 76.59, "elapsed_time": "5:07:58", "remaining_time": "1:34:07"}
145
+ {"current_steps": 1430, "total_steps": 1854, "loss": 1.213, "accuracy": 0.5874999761581421, "learning_rate": 6.180223212826289e-07, "epoch": 2.3115780965851687, "percentage": 77.13, "elapsed_time": "5:10:03", "remaining_time": "1:31:56"}
146
+ {"current_steps": 1440, "total_steps": 1854, "loss": 1.195, "accuracy": 0.637499988079071, "learning_rate": 5.904069343621443e-07, "epoch": 2.3277429783794705, "percentage": 77.67, "elapsed_time": "5:12:16", "remaining_time": "1:29:46"}
147
+ {"current_steps": 1450, "total_steps": 1854, "loss": 1.2137, "accuracy": 0.550000011920929, "learning_rate": 5.633398970942544e-07, "epoch": 2.3439078601737724, "percentage": 78.21, "elapsed_time": "5:14:18", "remaining_time": "1:27:34"}
148
+ {"current_steps": 1460, "total_steps": 1854, "loss": 1.1805, "accuracy": 0.5375000238418579, "learning_rate": 5.368289819205069e-07, "epoch": 2.3600727419680743, "percentage": 78.75, "elapsed_time": "5:16:15", "remaining_time": "1:25:20"}
149
+ {"current_steps": 1470, "total_steps": 1854, "loss": 1.3029, "accuracy": 0.5562499761581421, "learning_rate": 5.108818015890785e-07, "epoch": 2.376237623762376, "percentage": 79.29, "elapsed_time": "5:18:25", "remaining_time": "1:23:10"}
150
+ {"current_steps": 1480, "total_steps": 1854, "loss": 1.1697, "accuracy": 0.6187499761581421, "learning_rate": 4.855058069687291e-07, "epoch": 2.392402505556678, "percentage": 79.83, "elapsed_time": "5:20:21", "remaining_time": "1:20:57"}
151
+ {"current_steps": 1490, "total_steps": 1854, "loss": 1.3291, "accuracy": 0.5625, "learning_rate": 4.607082849092523e-07, "epoch": 2.40856738735098, "percentage": 80.37, "elapsed_time": "5:22:35", "remaining_time": "1:18:48"}
152
+ {"current_steps": 1500, "total_steps": 1854, "loss": 1.1874, "accuracy": 0.5249999761581421, "learning_rate": 4.3649635614901405e-07, "epoch": 2.4247322691452817, "percentage": 80.91, "elapsed_time": "5:24:41", "remaining_time": "1:16:37"}
153
+ {"current_steps": 1500, "total_steps": 1854, "eval_loss": 1.265723466873169, "epoch": 2.4247322691452817, "percentage": 80.91, "elapsed_time": "5:28:22", "remaining_time": "1:17:29"}