--- license: apache-2.0 library_name: peft tags: - axolotl - generated_from_trainer base_model: mistralai/Mistral-7B-v0.1 model-index: - name: mtext-150224_mistral results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: mistralai/Mistral-7B-v0.1 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer is_mistral_derived_model: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: ascherrer/mtext-data-150224_2 type: completion field: text dataset_prepared_path: last_run_prepared hub_model_id: ascherrer/mtext-150224_mistral val_set_size: 0.01 output_dir: ./out adapter: qlora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj sequence_len: 8192 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true wandb_project: "machine-de-textes" wandb_entity: wandb_watch: wandb_run_id: wandb_log_model: "checkpoint" lora_modules_to_save: - embed_tokens - lm_head gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 3 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_sample_packing: False eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" tokens: # these are delimiters - "<|s|>" - "<|e|>" ```

# mtext-150224_mistral This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0248 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.2902 | 0.04 | 1 | 3.5809 | | 2.6747 | 0.27 | 7 | 2.3159 | | 1.8679 | 0.53 | 14 | 2.0945 | | 1.9268 | 0.8 | 21 | 2.0629 | | 1.6064 | 1.04 | 28 | 2.0900 | | 1.5556 | 1.3 | 35 | 2.0501 | | 1.5276 | 1.57 | 42 | 2.0626 | | 1.517 | 1.84 | 49 | 2.0497 | | 1.4512 | 2.1 | 56 | 2.0396 | | 1.4266 | 2.36 | 63 | 2.0293 | | 1.4217 | 2.63 | 70 | 2.0249 | | 1.4334 | 2.9 | 77 | 2.0248 | ### Framework versions - PEFT 0.9.1.dev0 - Transformers 4.39.0.dev0 - Pytorch 2.1.2+cu118 - Datasets 2.18.0 - Tokenizers 0.15.0