--- license: cc-by-nc-4.0 tags: - merge - mergekit datasets: - pankajmathur/orca_mini_v1_dataset - openai/summarize_from_feedback - PygmalionAI/PIPPA - chargoddard/rpguild - lemonilia/LimaRP - PKU-Alignment/PKU-SafeRLHF - Intel/orca_dpo_pairs - allenai/ultrafeedback_binarized_cleaned model-index: - name: piano-medley-7b results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 67.58 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=chargoddard/piano-medley-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.36 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=chargoddard/piano-medley-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.49 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=chargoddard/piano-medley-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 61.42 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=chargoddard/piano-medley-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 79.16 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=chargoddard/piano-medley-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 56.56 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=chargoddard/piano-medley-7b name: Open LLM Leaderboard --- Another experiment in the line of [loyal-piano-m7](https://huggingface.co/chargoddard/loyal-piano-m7). Steps taken to produce this model: * Train loyal-piano-m7 * cDPO with HuggingFaceH4/ultrafeedback_binarized to produce loyal-piano-m7-cdpo * Train another model with different sampling of the same source datasets as loyal-piano, let's call it servile-harpsichord * cDPO servile-harpsichord with allenai/ultrafeedback_binarized_cleaned, Intel/orca_dpo_pairs, and a helpfulness-only version of PKU-Alignment/PKU-SafeRLHF * TIES merge several checkpoints of servile-harpsichord-cdpo with loyal-piano-m7-cdpo Local benchmarks show the result to be better than any of the individual components. Let's see if that holds up! Trained using the Alpaca prompt format. Configuration for final merge: ```yml models: - model: chargoddard/loyal-piano-m7-cdpo parameters: density: 1.0 weight: 1.0 - model: /home/ubuntu/servile-harpsichord-cdpo/checkpoint-4186 parameters: weight: 0.1 - model: /home/ubuntu/servile-harpsichord-cdpo/checkpoint-5796 parameters: weight: 0.2 - model: /home/ubuntu/servile-harpsichord-cdpo/checkpoint-6118 parameters: weight: 0.3 - model: /home/ubuntu/servile-harpsichord-cdpo/final parameters: weight: 0.4 merge_method: ties base_model: mistralai/Mistral-7B-v0.1 dtype: bfloat16 parameters: density: 0.4 normalize: true int8_mask: true ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_chargoddard__piano-medley-7b) | Metric |Value| |---------------------------------|----:| |Avg. |69.10| |AI2 Reasoning Challenge (25-Shot)|67.58| |HellaSwag (10-Shot) |85.36| |MMLU (5-Shot) |64.49| |TruthfulQA (0-shot) |61.42| |Winogrande (5-shot) |79.16| |GSM8k (5-shot) |56.56|