--- license: apache-2.0 library_name: peft tags: - axolotl - generated_from_trainer base_model: mistralai/Mistral-7B-v0.1 model-index: - name: mimic3-mistral-7B-v0.1 results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: mistralai/Mistral-7B-v0.1 hub_model_id: chaosIsRythmic/mimic3-mistral-7B-v0.1 load_in_8bit: false load_in_4bit: false strict: false datasets: # This will be the path used for the data when it is saved to the Volume in the cloud. - path: data.jsonl ds_type: json type: # JSONL file contains question, context, answer fields per line. # This gets mapped to instruction, input, output axolotl tags. field_instruction: question field_input: context field_output: answer # Format is used by axolotl to generate the prompt. format: |- [INST] Using the medical notes below, assign the right ICD-9 codes. {input} {instruction} [/INST] tokens: # add new control tokens from the dataset to the model - "[INST]" - " [/INST]" - "[SQL]" - " [/SQL]" dataset_prepared_path: last_run_prepared val_set_size: 0.2 output_dir: ./lora-out sequence_len: 4096 sample_packing: false eval_sample_packing: false pad_to_sequence_len: false pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 16 lora_alpha: 32 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_modules_to_save: # required when adding new tokens to LLaMA/Mistral - embed_tokens - lm_head wandb_project: mimic3 wandb_entity: wandb_watch: wandb_run_id: loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 gradient_accumulation_steps: 1 micro_batch_size: 6 num_epochs: 6 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 0.0001 bf16: auto fp16: false tf32: false train_on_inputs: false group_by_length: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 saves_per_epoch: 1 evals_per_epoch: 4 eval_max_new_tokens: 128 debug: deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

# mimic3-mistral-7B-v0.1 This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6757 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 12 - total_eval_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.9923 | 0.0013 | 1 | 2.1006 | | 0.3728 | 0.2506 | 200 | 0.3790 | | 0.3122 | 0.5013 | 400 | 0.3571 | | 0.305 | 0.7519 | 600 | 0.3203 | | 0.2929 | 1.0025 | 800 | 0.3158 | | 0.2873 | 1.2531 | 1000 | 0.3000 | | 0.2654 | 1.5038 | 1200 | 0.2971 | | 0.3343 | 1.7544 | 1400 | 0.2846 | | 0.2272 | 2.0050 | 1600 | 0.2901 | | 0.1976 | 2.2556 | 1800 | 0.2900 | | 0.2315 | 2.5063 | 2000 | 0.2829 | | 0.1913 | 2.7569 | 2200 | 0.2852 | | 0.2578 | 3.0075 | 2400 | 0.2809 | | 0.1614 | 3.2581 | 2600 | 0.3104 | | 0.1526 | 3.5088 | 2800 | 0.3171 | | 0.1712 | 3.7594 | 3000 | 0.3042 | | 0.1016 | 4.0100 | 3200 | 0.3367 | | 0.0658 | 4.2607 | 3400 | 0.4388 | | 0.0636 | 4.5113 | 3600 | 0.4601 | | 0.0534 | 4.7619 | 3800 | 0.4398 | | 0.0363 | 5.0125 | 4000 | 0.4785 | | 0.0016 | 5.2632 | 4200 | 0.6498 | | 0.0183 | 5.5138 | 4400 | 0.6769 | | 0.0185 | 5.7644 | 4600 | 0.6757 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.2 - Pytorch 2.2.2+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1