SAEs for use with the SAELens library
This repository contains the following batch topk Matryoshka SAEs for Gemma-2-2b. All SAEs have 32k width and are trained with k=40 on 750M tokens from the Pile using SAELens. The SAEs were trained with Matryoshka layers of width 128, 512, 2048, 8192, and 32768. This release contains both standard Matryoshka SAE and snap loss Matryoshka SAEs.
This repository contains the following SAEs:
Snap Loss Matryoshka SAEs
layer | SAE ID | width | l0 | explained variance |
---|---|---|---|---|
0 | snap/blocks.0.hook_resid_post | 32768 | 40 | 0.919964 |
1 | snap/blocks.1.hook_resid_post | 32768 | 40 | 0.863969 |
2 | snap/blocks.2.hook_resid_post | 32768 | 40 | 0.858767 |
3 | snap/blocks.3.hook_resid_post | 32768 | 40 | 0.815844 |
4 | snap/blocks.4.hook_resid_post | 32768 | 40 | 0.821094 |
5 | snap/blocks.5.hook_resid_post | 32768 | 40 | 0.797083 |
6 | snap/blocks.6.hook_resid_post | 32768 | 40 | 0.79815 |
7 | snap/blocks.7.hook_resid_post | 32768 | 40 | 0.78946 |
8 | snap/blocks.8.hook_resid_post | 32768 | 40 | 0.779236 |
9 | snap/blocks.9.hook_resid_post | 32768 | 40 | 0.759022 |
10 | snap/blocks.10.hook_resid_post | 32768 | 40 | 0.743998 |
11 | snap/blocks.11.hook_resid_post | 32768 | 40 | 0.731758 |
12 | snap/blocks.12.hook_resid_post | 32768 | 40 | 0.725974 |
13 | snap/blocks.13.hook_resid_post | 32768 | 40 | 0.727936 |
14 | snap/blocks.14.hook_resid_post | 32768 | 40 | 0.727065 |
15 | snap/blocks.15.hook_resid_post | 32768 | 40 | 0.757408 |
16 | snap/blocks.16.hook_resid_post | 32768 | 40 | 0.751874 |
17 | snap/blocks.17.hook_resid_post | 32768 | 40 | 0.763654 |
18 | snap/blocks.18.hook_resid_post | 32768 | 40 | 0.77644 |
19 | snap/blocks.19.hook_resid_post | 32768 | 40 | 0.768622 |
20 | snap/blocks.20.hook_resid_post | 32768 | 40 | 0.761658 |
21 | snap/blocks.21.hook_resid_post | 32768 | 40 | 0.765593 |
22 | snap/blocks.22.hook_resid_post | 32768 | 40 | 0.741098 |
23 | snap/blocks.23.hook_resid_post | 32768 | 40 | 0.729718 |
24 | snap/blocks.24.hook_resid_post | 32768 | 40 | 0.754838 |
Standard Matryoshka SAEs
layer | SAE ID | width | l0 | explained variance |
---|---|---|---|---|
0 | standard/blocks.0.hook_resid_post | 32768 | 40 | 0.91832 |
1 | standard/blocks.1.hook_resid_post | 32768 | 40 | 0.863454 |
2 | standard/blocks.2.hook_resid_post | 32768 | 40 | 0.841324 |
3 | standard/blocks.3.hook_resid_post | 32768 | 40 | 0.814794 |
4 | standard/blocks.4.hook_resid_post | 32768 | 40 | 0.820418 |
5 | standard/blocks.5.hook_resid_post | 32768 | 40 | 0.796252 |
6 | standard/blocks.6.hook_resid_post | 32768 | 40 | 0.797322 |
7 | standard/blocks.7.hook_resid_post | 32768 | 40 | 0.787601 |
8 | standard/blocks.8.hook_resid_post | 32768 | 40 | 0.779433 |
9 | standard/blocks.9.hook_resid_post | 32768 | 40 | 0.75697 |
10 | standard/blocks.10.hook_resid_post | 32768 | 40 | 0.745011 |
11 | standard/blocks.11.hook_resid_post | 32768 | 40 | 0.732177 |
12 | standard/blocks.12.hook_resid_post | 32768 | 40 | 0.726209 |
13 | standard/blocks.13.hook_resid_post | 32768 | 40 | 0.719405 |
14 | standard/blocks.14.hook_resid_post | 32768 | 40 | 0.719056 |
15 | standard/blocks.15.hook_resid_post | 32768 | 40 | 0.756888 |
16 | standard/blocks.16.hook_resid_post | 32768 | 40 | 0.742889 |
17 | standard/blocks.17.hook_resid_post | 32768 | 40 | 0.757294 |
18 | standard/blocks.18.hook_resid_post | 32768 | 40 | 0.76921 |
19 | standard/blocks.19.hook_resid_post | 32768 | 40 | 0.766661 |
20 | standard/blocks.20.hook_resid_post | 32768 | 40 | 0.760939 |
21 | standard/blocks.21.hook_resid_post | 32768 | 40 | 0.759883 |
22 | standard/blocks.22.hook_resid_post | 32768 | 40 | 0.740612 |
23 | standard/blocks.23.hook_resid_post | 32768 | 40 | 0.729678 |
24 | standard/blocks.24.hook_resid_post | 32768 | 40 | 0.747313 |
Load these SAEs using SAELens as below:
from sae_lens import SAE
sae, cfg_dict, sparsity = SAE.from_pretrained("chanind/gemma-2-2b-batch-topk-matryoshka-saes-w-32k-l0-40", "<sae_id>")
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support