SAEs for use with the SAELens library

This repository contains the following batch topk Matryoshka SAEs for Gemma-2-2b. All SAEs have 32k width and are trained with k=40 on 750M tokens from the Pile using SAELens. The SAEs were trained with Matryoshka layers of width 128, 512, 2048, 8192, and 32768. This release contains both standard Matryoshka SAE and snap loss Matryoshka SAEs.

This repository contains the following SAEs:

Snap Loss Matryoshka SAEs

layer SAE ID width l0 explained variance
0 snap/blocks.0.hook_resid_post 32768 40 0.919964
1 snap/blocks.1.hook_resid_post 32768 40 0.863969
2 snap/blocks.2.hook_resid_post 32768 40 0.858767
3 snap/blocks.3.hook_resid_post 32768 40 0.815844
4 snap/blocks.4.hook_resid_post 32768 40 0.821094
5 snap/blocks.5.hook_resid_post 32768 40 0.797083
6 snap/blocks.6.hook_resid_post 32768 40 0.79815
7 snap/blocks.7.hook_resid_post 32768 40 0.78946
8 snap/blocks.8.hook_resid_post 32768 40 0.779236
9 snap/blocks.9.hook_resid_post 32768 40 0.759022
10 snap/blocks.10.hook_resid_post 32768 40 0.743998
11 snap/blocks.11.hook_resid_post 32768 40 0.731758
12 snap/blocks.12.hook_resid_post 32768 40 0.725974
13 snap/blocks.13.hook_resid_post 32768 40 0.727936
14 snap/blocks.14.hook_resid_post 32768 40 0.727065
15 snap/blocks.15.hook_resid_post 32768 40 0.757408
16 snap/blocks.16.hook_resid_post 32768 40 0.751874
17 snap/blocks.17.hook_resid_post 32768 40 0.763654
18 snap/blocks.18.hook_resid_post 32768 40 0.77644
19 snap/blocks.19.hook_resid_post 32768 40 0.768622
20 snap/blocks.20.hook_resid_post 32768 40 0.761658
21 snap/blocks.21.hook_resid_post 32768 40 0.765593
22 snap/blocks.22.hook_resid_post 32768 40 0.741098
23 snap/blocks.23.hook_resid_post 32768 40 0.729718
24 snap/blocks.24.hook_resid_post 32768 40 0.754838

Standard Matryoshka SAEs

layer SAE ID width l0 explained variance
0 standard/blocks.0.hook_resid_post 32768 40 0.91832
1 standard/blocks.1.hook_resid_post 32768 40 0.863454
2 standard/blocks.2.hook_resid_post 32768 40 0.841324
3 standard/blocks.3.hook_resid_post 32768 40 0.814794
4 standard/blocks.4.hook_resid_post 32768 40 0.820418
5 standard/blocks.5.hook_resid_post 32768 40 0.796252
6 standard/blocks.6.hook_resid_post 32768 40 0.797322
7 standard/blocks.7.hook_resid_post 32768 40 0.787601
8 standard/blocks.8.hook_resid_post 32768 40 0.779433
9 standard/blocks.9.hook_resid_post 32768 40 0.75697
10 standard/blocks.10.hook_resid_post 32768 40 0.745011
11 standard/blocks.11.hook_resid_post 32768 40 0.732177
12 standard/blocks.12.hook_resid_post 32768 40 0.726209
13 standard/blocks.13.hook_resid_post 32768 40 0.719405
14 standard/blocks.14.hook_resid_post 32768 40 0.719056
15 standard/blocks.15.hook_resid_post 32768 40 0.756888
16 standard/blocks.16.hook_resid_post 32768 40 0.742889
17 standard/blocks.17.hook_resid_post 32768 40 0.757294
18 standard/blocks.18.hook_resid_post 32768 40 0.76921
19 standard/blocks.19.hook_resid_post 32768 40 0.766661
20 standard/blocks.20.hook_resid_post 32768 40 0.760939
21 standard/blocks.21.hook_resid_post 32768 40 0.759883
22 standard/blocks.22.hook_resid_post 32768 40 0.740612
23 standard/blocks.23.hook_resid_post 32768 40 0.729678
24 standard/blocks.24.hook_resid_post 32768 40 0.747313

Load these SAEs using SAELens as below:

from sae_lens import SAE

sae, cfg_dict, sparsity = SAE.from_pretrained("chanind/gemma-2-2b-batch-topk-matryoshka-saes-w-32k-l0-40", "<sae_id>")
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support