--- tags: - ultralyticsplus - yolov8 - ultralytics - yolo - vision - image-segmentation - pytorch library_name: ultralytics library_version: 8.0.239 inference: false datasets: - chanelcolgate/yenthienviet model-index: - name: chanelcolgate/cadivi-segment-yolov8m-v2 results: - task: type: image-segmentation dataset: type: chanelcolgate/yenthienviet name: yenthienviet split: validation metrics: - type: precision # since mAP@0.5 is not available on hf.co/metrics value: 0.995 # min: 0.0 - max: 1.0 name: mAP@0.5(box) - type: precision # since mAP@0.5 is not available on hf.co/metrics value: 0.995 # min: 0.0 - max: 1.0 name: mAP@0.5(mask) ---
chanelcolgate/cadivi-segment-yolov8m-v2
### Supported Labels ``` ['cable'] ``` ### How to use - Install [ultralyticsplus](https://github.com/fcakyon/ultralyticsplus): ```bash pip install ultralyticsplus==0.1.0 ultralytics==8.0.239 ``` - Load model and perform prediction: ```python from ultralyticsplus import YOLO, render_result # load model model = YOLO('chanelcolgate/cadivi-segment-yolov8m-v2') # set model parameters model.overrides['conf'] = 0.25 # NMS confidence threshold model.overrides['iou'] = 0.45 # NMS IoU threshold model.overrides['agnostic_nms'] = False # NMS class-agnostic model.overrides['max_det'] = 1000 # maximum number of detections per image # set image image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg' # perform inference results = model.predict(image) # observe results print(results[0].boxes) print(results[0].masks) render = render_result(model=model, image=image, result=results[0]) render.show() ```