from flask import Flask, request, jsonify import tensorflow as tf import numpy as np app = Flask(__name__) # Load the TensorFlow Lite model interpreter = tf.lite.Interpreter(model_path="quote_model.tflite") # Use your model file name interpreter.allocate_tensors() # Get input & output details input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() @app.route("/predict", methods=["POST"]) def predict(): try: data = request.json # Get input JSON embedding = np.array([data["embedding"]], dtype=np.float32) # Convert to tensor # Run inference interpreter.set_tensor(input_details[0]['index'], embedding) interpreter.invoke() output_data = interpreter.get_tensor(output_details[0]['index']) return jsonify({"predictions": output_data.tolist()}) except Exception as e: return jsonify({"error": str(e)}) # Run the Flask server if __name__ == "__main__": app.run(host="0.0.0.0", port=7860)