---
language: "en"
inference: false
tags:
- Vocoder
- HiFIGAN
- speech-synthesis
- speechbrain
license: "apache-2.0"
datasets:
- LJSpeech
---
# Vocoder with HiFIGAN Unit
## Work In Progress ....
```python
import pathlib as pl
import numpy as np
import matplotlib.pyplot as plt
import torch
import torchaudio
from speechbrain.inference.vocoders import UnitHIFIGAN
from speechbrain.lobes.models.huggingface_transformers import (
hubert,
wav2vec2,
wavlm,
)
from speechbrain.lobes.models.huggingface_transformers.discrete_ssl import (
DiscreteSSL,
)
ENCODER_CLASSES = {
"HuBERT": hubert.HuBERT,
"Wav2Vec2": wav2vec2.Wav2Vec2,
"WavLM": wavlm.WavLM,
}
kmeans_folder = "poonehmousavi/SSL_Quantization"
kmeans_dataset = "LJSpeech" # LibriSpeech-100-360-500
num_clusters = 1000
encoder_type = "HuBERT" # one of [HuBERT, Wav2Vec2, WavLM]
encoder_source = "facebook/hubert-large-ll60k"
layer = [3, 7, 12, 18, 23]
vocoder_source = (
"chaanks/hifigan-unit-hubert-ll60k-l3-7-12-18-23-k1000-ljspeech-ljspeech"
)
save_path = pl.Path(".tmpdir")
device = "cuda"
sample_rate = 16000
wav = "chaanks/hifigan-unit-hubert-ll60k-l3-7-12-18-23-k1000-ljspeech-ljspeech/test.wav"
encoder_class = ENCODER_CLASSES[encoder_type]
encoder = encoder_class(
source=encoder_source,
save_path=(save_path / "encoder").as_posix(),
output_norm=False,
freeze=True,
freeze_feature_extractor=True,
apply_spec_augment=False,
output_all_hiddens=True,
).to(device)
discrete_encoder = DiscreteSSL(
save_path=(save_path / "discrete_encoder").as_posix(),
ssl_model=encoder,
kmeans_dataset=kmeans_dataset,
kmeans_repo_id=kmeans_folder,
num_clusters=num_clusters,
)
vocoder = UnitHIFIGAN.from_hparams(
source=vocoder_source,
run_opts={"device": str(device)},
savedir=(save_path / "vocoder").as_posix(),
)
audio = vocoder.load_audio(wav)
audio = audio.unsqueeze(0).to(device)
deduplicates = [False for _ in layer]
bpe_tokenizers = [None for _ in layer]
tokens, _, _ = discrete_encoder(
audio,
SSL_layers=layer,
deduplicates=deduplicates,
bpe_tokenizers=bpe_tokenizers,
)
tokens = tokens.cpu().squeeze(0)
num_layer = len(layer)
offsets = torch.arange(num_layer) * num_clusters
tokens = tokens + offsets
waveform = vocoder.decode_unit(tokens)
torchaudio.save("pred.wav", waveform.cpu(), sample_rate=sample_rate)
```