--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer - prompt injection - security - jailbreak - prompt security metrics: - accuracy - precision - recall - f1 model-index: - name: prompt-tackler results: [] datasets: - reshabhs/SPML_Chatbot_Prompt_Injection - VMware/open-instruct - jackhhao/jailbreak-classification - cgoosen/prompt_injection_combined language: - en - afr - fr #thumbnail: "url to a thumbnail used in social sharing" library_name: transformers --- # prompt-tackler This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0101 - Accuracy: 0.9984 - Precision: 0.9984 - Recall: 0.9984 - F1: 0.9984 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.0242 | 1.0 | 3058 | 0.0167 | 0.9967 | 0.9968 | 0.9967 | 0.9967 | | 0.0146 | 2.0 | 6116 | 0.0163 | 0.9977 | 0.9977 | 0.9977 | 0.9977 | | 0.009 | 3.0 | 9174 | 0.0112 | 0.9984 | 0.9984 | 0.9984 | 0.9984 | | 0.0029 | 4.0 | 12232 | 0.0101 | 0.9984 | 0.9984 | 0.9984 | 0.9984 | | 0.0029 | 5.0 | 15290 | 0.0179 | 0.9980 | 0.9981 | 0.9980 | 0.9980 | | 0.0012 | 6.0 | 18348 | 0.0160 | 0.9985 | 0.9985 | 0.9985 | 0.9985 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.5.0+cu124 - Datasets 2.18.0 - Tokenizers 0.19.1