--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: llm_firewall_distilbert-base-uncased results: [] --- # llm_firewall_distilbert-base-uncased This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1218 - Accuracy: 0.9451 # Latest finetune 5 Dec 2023 {'eval_loss': 0.12179878354072571, 'eval_accuracy': 0.9450980392156862, 'eval_runtime': 5.8053, 'eval_samples_per_second': 43.925, 'eval_steps_per_second': 2.756, 'epoch': 20.0} ## Model description Finetuned distilbert-uncased on prompts that are either malicious or benign. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3191 | 1.0 | 64 | 0.5996 | 0.7255 | | 0.5065 | 2.0 | 128 | 0.4536 | 0.8 | | 0.4134 | 3.0 | 192 | 0.3856 | 0.8275 | | 0.3294 | 4.0 | 256 | 0.2654 | 0.8824 | | 0.2536 | 5.0 | 320 | 0.1977 | 0.9216 | | 0.2001 | 6.0 | 384 | 0.1671 | 0.9412 | | 0.2144 | 7.0 | 448 | 0.1670 | 0.9373 | | 0.2017 | 8.0 | 512 | 0.1575 | 0.9333 | | 0.1819 | 9.0 | 576 | 0.1866 | 0.9294 | | 0.143 | 10.0 | 640 | 0.1834 | 0.9373 | | 0.153 | 11.0 | 704 | 0.1589 | 0.9412 | | 0.1469 | 12.0 | 768 | 0.1347 | 0.9451 | | 0.1568 | 13.0 | 832 | 0.1425 | 0.9451 | | 0.139 | 14.0 | 896 | 0.1438 | 0.9451 | | 0.1889 | 15.0 | 960 | 0.1330 | 0.9451 | | 0.1185 | 16.0 | 1024 | 0.1323 | 0.9451 | | 0.1166 | 17.0 | 1088 | 0.1280 | 0.9451 | | 0.1475 | 18.0 | 1152 | 0.1233 | 0.9451 | | 0.1145 | 19.0 | 1216 | 0.1225 | 0.9451 | | 0.1121 | 20.0 | 1280 | 0.1218 | 0.9451 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1 - Datasets 2.15.0 - Tokenizers 0.15.0